No.P-267M-E007/2 DATE 2025-11

# PRODUCTS DATA SHEET

# TANTALUM SOLID ELECTROLYTIC CAPACITOR

Type 267 M Series

ROHS COMPLIANT LEAD FREE











MATSUO ELECTRIC CO., LTD.

### Type 267 M Series

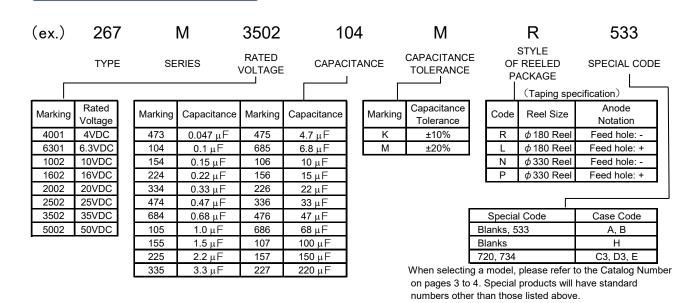
Type 267 is specially designed to SMD, based on our technology of chip tantalum capacitors acquired over many years. Fully-molded construction provides excellent mechanical protection, superior moisture resistance and high soldering heat resistance.

#### **FEATURES**

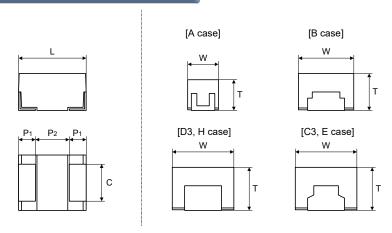
- 1. Suitable for surface mounting.
- 2. Dimensional accuracy and symmetrical terminal structure suitable for high-density mounting ensures excellent "Self-Alignment".
- 3. Soldering: 260°C for 10 seconds by re-flow soldering.
- 4. Lead-free and RoHS Compliant

# **APPLICATION CLASSIFICATION BY USE**

The application classification by use which divided the market and use into four is set up supposing our products being used for a broad use.


Please confirm the application classification by use of each product that you intend to use.

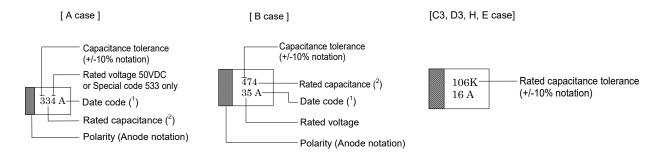
Moreover, please be sure to inform to our Sales Department in advance in examination of the use of those other than the indicated use.


#### **RATING**

| Item                                                                   | Rating                      |
|------------------------------------------------------------------------|-----------------------------|
| Category temperature range (Operating temperature )                    | -55 ~ +125°C                |
| Rated Temperature (Maximum operating temperature for DC rated Voltage) | +85°C                       |
| DC rated voltage range [U <sub>R</sub> ]                               |                             |
| Capacitance (Normal capacitance range [C <sub>R</sub> ]                | See CATALOG NUMBERS AND     |
| Capacitance tolerance                                                  | RATING OF STANDARD PRODUCTS |
| Failure rate level                                                     | 1%/1000 h                   |

#### ORDERING INFORMATION




## **DIMENSIONS**



(mm)

| Case<br>Code | Case Size | L ±0.2 | W ±0.2 | T ±0.2 | P <sub>1</sub> ±0.2 | P <sub>2</sub> min. | C ±0.1 |
|--------------|-----------|--------|--------|--------|---------------------|---------------------|--------|
| Α            | 3216      | 3.2    | 1.6    | 1.6    | 0.75                | 1.4                 | 1.2    |
| В            | 3528      | 3.5    | 2.8    | 1.9    | 0.8                 | 1.5                 | 2.2    |
| C3           | 6032      | 6.0    | 3.2    | 2.5    | 1.3                 | 3.0                 | 2.2    |
| D3           | 7343      | 7.3    | 4.4    | 2.8    | 1.3                 | 4.0                 | 2.4    |
| Н            | 7343H     | 7.3    | 4.4    | 4.1    | 1.3                 | 4.0                 | 2.4    |
| Е            | 7257      | 7.3    | 5.8    | 3.5    | 1.3                 | 4.0                 | 3.5    |

## **MARKING**



Note(1) Date codes are based on the Annex 1 Table 13 of JIS C 5101-1.

Note(2) First two digits are significant figures of capacitance value(pF). Third digit is the number of zeros following.

## RECOMMENDED SOLDER PAD LAYOUT



|           |           |      |        |     | (mm) |  |
|-----------|-----------|------|--------|-----|------|--|
|           | 0 0:      | á    | а      |     | С    |  |
| Case Code | Case Size | Flow | Reflow | b   |      |  |
| Α         | 3216      | 3.0  | 2.0    | 1.5 | 1.5  |  |
| В         | 3528      | 3.2  | 2.0    | 2.4 | 1.8  |  |
| C3        | 6032      | 4.2  | 2.4    | 2.5 | 3.3  |  |
| D3        | 7343      | 5.2  | 2.4    | 2.7 | 4.6  |  |
| Е         | 7257      | 5.6  | 2.4    | 3.8 | 4.6  |  |
| Н         | 7343H     | 5.2  | 2.4    | 2.7 | 4.6  |  |

In order to expect the self alignment effect, it is recommended that land width is almost the same size as terminal of capacitor, and space between lands (c) nearly equal to the space between terminals for appropriate soldering.

# STANDARD RATING

# Mar., 2022

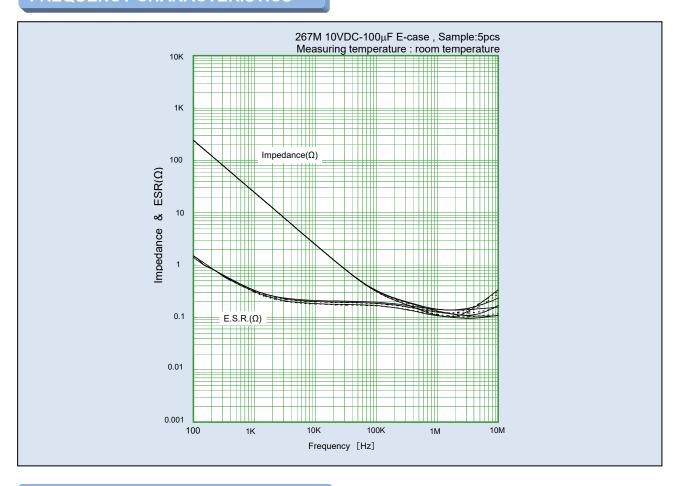
| R.V.(VDC)<br>Cap.( μF ) | 4  | 6.3  | 10 | 16   | 20 | 25     | 35     | 50     |
|-------------------------|----|------|----|------|----|--------|--------|--------|
| 0.047                   |    |      |    |      |    |        |        | Α      |
| 0.068                   |    |      |    |      |    |        |        |        |
| 0.1                     |    |      |    |      |    |        | Α      | А      |
| 0.15                    |    |      |    |      |    |        | Α      | A, B   |
| 0.22                    |    |      |    |      |    |        | Α      | В      |
| 0.33                    |    |      |    |      |    |        | Α      | В      |
| 0.47                    |    |      |    |      |    | Α      | A, B   | B, C3  |
| 0.68                    |    |      |    |      | Α  | Α      | В      | C3     |
| 1.0                     |    |      |    | Α    | Α  |        | В      | C3     |
| 1.5                     |    |      | Α  | Α    |    | В      | B, C3  | C3, D3 |
| 2.2                     |    | Α    | Α  |      | В  | В      | C3     | D3     |
| 3.3                     | Α  | Α    |    | В    | В  | C3     | C3, D3 | D3     |
| 4.7                     | Α  |      | В  | В    | C3 | C3     | C3, D3 |        |
| 6.8                     |    | В    | В  | C3   | C3 | C3, D3 | D3     |        |
| 10                      | В  | В    | C3 | C3   | C3 | D3     | D3, E  |        |
| 15                      | В  | C3   | C3 | C3   | D3 | D3     | E      |        |
| 22                      | C3 | C3   | C3 | D3   | D3 | E      | Н      |        |
| 33                      | C3 | C3   | D3 | D3   | E  | Н      |        |        |
| 47                      | C3 | D3   | D3 | E    | E  |        |        |        |
| 68                      | D3 | D3   | E  | H, E |    |        |        |        |
| 100                     | D3 | H, E | E  |      |    |        |        |        |
| 150                     | E  | E    |    |      |    |        |        |        |
| 220                     | E  |      |    |      |    |        |        |        |

# CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS

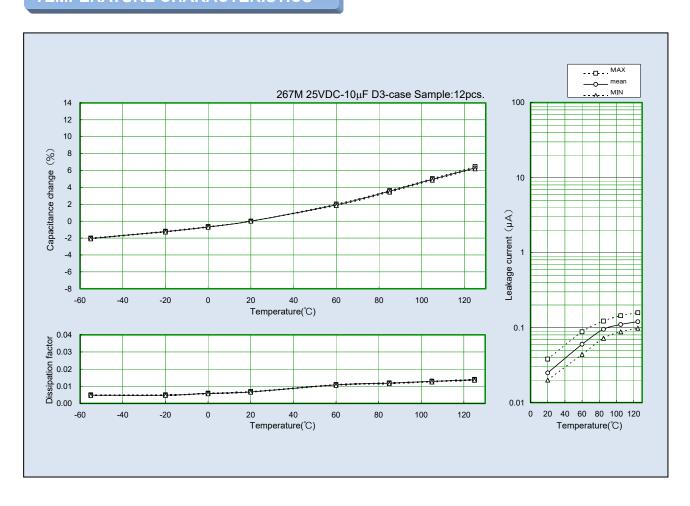
Mar. , 2022

| Catalog Number (1)(2)(3)                                       | U <sub>R</sub><br>VDC | VI           | J <sub>s</sub><br>DC | C <sub>R</sub><br>uF | Case code | Leakag | μA  | nt(DCL) |      | Dissipati | on facto | or   | ESI   | RΩ       |
|----------------------------------------------------------------|-----------------------|--------------|----------------------|----------------------|-----------|--------|-----|---------|------|-----------|----------|------|-------|----------|
|                                                                | VDC                   | 85℃          | 125℃                 | •                    |           | 20℃    | 85℃ | 125℃    | -55℃ | 20℃       | 85°C     | 125℃ | 10kHz | 100kHz   |
| 267M 4001 335 _1_23                                            | 4                     | 5            | 3.2                  | 3.3                  | Α         | 0.5    | 5   | 6.3     | 0.08 | 0.06      | 0.06     | 0.06 | 4.0   | 3.6      |
| 267M 4001 475 _1_2 533 _3                                      | ↓                     | ↓            | ↓                    | 4.7                  | Α         | 0.5    | 5   | 6.3     | ↓    | ↓         | ↓        | ↓    | 1     | <b>↓</b> |
| 267M 4001 106 _1_23                                            | ↓                     | ↓            | ↓                    | 10                   | В         | 0.5    | 5   | 6.3     | ↓    | ↓         | <b>↓</b> | ↓    | 2.0   | 1.8      |
| 267M 4001 156 _ <sup>1</sup> _ <sup>2</sup> 533 _ <sup>3</sup> | ↓                     | ↓            | ↓                    | 15                   | В         | 0.6    | 6   | 7.5     | ↓    | ↓         | 1        | ↓    | 1     | <b>↓</b> |
| 267M 4001 226 _1_2 720 _3                                      | ↓                     | ↓            | ↓                    | 22                   | C3        | 0.9    | 9   | 11      | ↓    | ↓         | ↓        | ↓    | 0.6   | 0.55     |
| 267M 4001 336 _1_2 720 _3                                      | ↓                     | ↓            | ↓                    | 33                   | C3        | 1.3    | 13  | 17      | ↓    | ↓         | ↓        | ↓    | 1     | <b>↓</b> |
| 267M 4001 476 _ <sup>1</sup> _ <sup>2</sup> 720 _ <sup>3</sup> | ↓                     | ↓            | ↓                    | 47                   | C3        | 1.9    | 19  | 24      | ↓    | ↓         | ↓        | ↓    | 1     | <b>↓</b> |
| 267M 4001 686 _1_2 720 _3                                      | ↓                     | ↓            | ↓                    | 68                   | D3        | 2.7    | 27  | 34      | ↓    | ↓         | ↓        | ↓    | 0.5   | 0.45     |
| 267M 4001 107 _1_2 720 _3                                      | ↓                     | ↓            | . ↓                  | 100                  | D3        | 4.0    | 40  | 50      | ↓    | ↓         | ↓        | ↓    | ↓     | 0.45     |
| 267M 4001 157 _1 2 720 _3                                      | $\downarrow$          | ↓            | ↓                    | 150                  | Ε         | 6.0    | 60  | 75      | ↓    | ↓         | ↓        | ↓    | 0.3   | 0.28     |
| 267M 4001 227 _1 2 720 _3                                      | $\downarrow$          | $\downarrow$ | ↓                    | 220                  | Ε         | 8.8    | 88  | 110     | ↓    | ↓         | ↓        | ↓    | ↓     | 0.27     |
| 267M 6301 225 _1_23                                            | 6.3                   | 8            | 5                    | 2.2                  | Α         | 0.5    | 5   | 6.3     | 0.08 | 0.06      | 0.06     | 0.06 | 4.0   | 3.6      |
| 267M 6301 335 _1_2 533 _3                                      | ↓                     | ↓            | ↓                    | 3.3                  | Α         | 0.5    | 5   | 6.3     | ↓    | ↓         | ↓        | ↓    | 1     | <b>↓</b> |
| 267M 6301 685 <sup>1 2</sup> <sup>3</sup>                      | ↓                     | ↓            | . ↓                  | 6.8                  | В         | 0.5    | 5   | 6.3     | ↓    | ↓         | ↓        | ↓    | 2.0   | 1.8      |
| 267M 6301 106 _1 2 533 _3                                      | $\downarrow$          | ↓            | ↓                    | 10                   | В         | 0.6    | 6   | 7.9     | ↓    | ↓         | <b>↓</b> | ↓    | ↓     | <b>↓</b> |
| 267M 6301 156 _1_2 720 _3                                      | ↓                     | ↓            | . ↓                  | 15                   | С3        | 0.9    | 9   | 12      | ↓    | ↓         | ↓        | ↓    | 1.0   | 0.9      |
| 267M 6301 226 _1_2 720 _3                                      | ↓                     | ↓            | ↓                    | 22                   | C3        | 1.4    | 14  | 17      | ↓    | ↓         | ↓        | ↓    | 0.6   | 0.55     |
| 267M 6301 336 _1_2 720 _3                                      | $\downarrow$          | ↓            | ↓                    | 33                   | C3        | 2.1    | 21  | 26      | ↓    | ↓         | ↓        | ↓    | ↓     | <b>↓</b> |
| 267M 6301 476 _1_2 720 _3                                      | ↓                     | ↓            | . ↓                  | 47                   | D3        | 3.0    | 30  | 37      | ↓    | ↓         | ↓        | ↓    | 0.5   | 0.45     |
| 267M 6301 686 _ <sup>1</sup> _ <sup>2</sup> 720 _ <sup>3</sup> | $\downarrow$          | ↓            | ↓                    | 68                   | D3        | 4.3    | 43  | 54      | ↓    | ↓         | ↓        | ↓    | ↓     | 0.45     |
| 267M 6301 107 <sup>1 2</sup> 720 <sup>3</sup>                  | ↓                     | ↓            | . ↓                  | 100                  | Ε         | 6.3    | 63  | 79      | 0.10 | 0.08      | 0.08     | 0.08 | 0.3   | 0.28     |
| 267M 6301 107 <sup>1 2</sup> <sup>3</sup>                      | $\downarrow$          | ↓            | ↓                    | 100                  | Н         | 6.3    | 63  | 79      | ↓    | ↓         | ↓        | ↓    | 0.5   | 0.45     |
| 267M 6301 157 _1 2 720 _3                                      | $\downarrow$          | $\downarrow$ | ↓                    | 150                  | Ε         | 9.5    | 95  | 118     | ↓    | ↓         | ↓        | ↓    | 0.3   | 0.27     |
| 267M 1002 155 _ <sup>1</sup> _ <sup>2</sup> _ <sup>3</sup>     | 10                    | 13           | 8                    | 1.5                  | Α         | 0.5    | 5   | 6.3     | 0.08 | 0.06      | 0.06     | 0.06 | 4.0   | 3.6      |
| 267M 1002 225 _1_2 533 _3                                      | ↓                     | ↓            | ↓                    | 2.2                  | Α         | 0.5    | 5   | 6.3     | ↓    | ↓         | ↓        | ↓    | 1     | <b>↓</b> |
| 267M 1002 475 _1_2 _3                                          | ↓                     | ↓            | ↓                    | 4.7                  | В         | 0.5    | 5   | 6.3     | ↓    | ↓         | 1        | ↓ ↓  | 2.0   | 1.8      |
| 267M 1002 685 _ <sup>1</sup> _ <sup>2</sup> 533 _ <sup>3</sup> | ↓                     | ↓            | ↓                    | 6.8                  | В         | 0.7    | 7   | 8.5     | ↓    | ↓         | 1        | ↓ ↓  | 1     | ↓        |
| 267M 1002 106 _1_2 720 _3                                      | $\downarrow$          | ↓            | ↓                    | 10                   | С3        | 1.0    | 10  | 13      | ↓    | ↓         | ↓        | ↓    | 1.0   | 0.9      |
| 267M 1002 156 _1 2 720 _3                                      | $\downarrow$          | ↓            | . ↓                  | 15                   | С3        | 1.5    | 15  | 19      | ↓    | ↓         | ↓        | ↓    | 1.0   | 0.9      |
| 267M 1002 226 1 2 720 3                                        | $\downarrow$          | ↓            | ↓ ↓                  | 22                   | СЗ        | 2.2    | 22  | 28      | ↓    | ↓         | ↓        | ↓    | 0.6   | 0.55     |
| 267M 1002 336 _ 1 _ 2 _ 720 _ 3                                | $\downarrow$          | ↓            | ↓                    | 33                   | D3        | 3.3    | 33  | 41      | ↓    | ↓         | ↓        | ↓    | 1.0   | 0.9      |

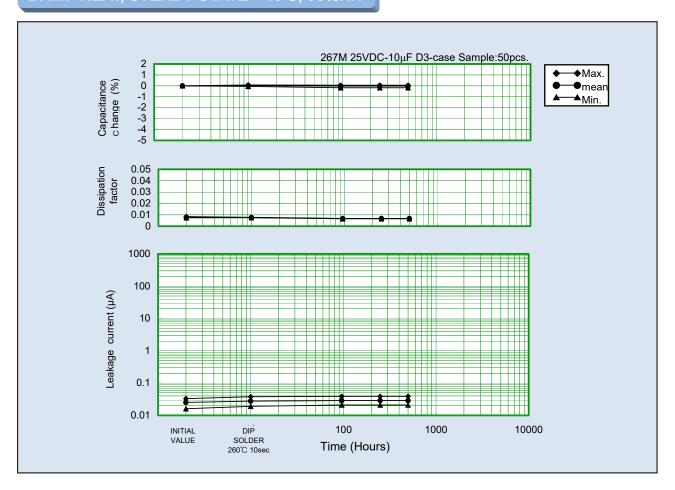
| Catalog Number (1)(2)(3)                                   | U <sub>R</sub> |              | J <sub>s</sub><br>DC | C <sub>R</sub> | Case     | Leakag     | je curre<br>μΑ | ent(DCL)   | С            | issipati  | on facto   | or       | ESF          | R Ω          |
|------------------------------------------------------------|----------------|--------------|----------------------|----------------|----------|------------|----------------|------------|--------------|-----------|------------|----------|--------------|--------------|
|                                                            | VDC            | 85°C         | 125℃                 | μF             | code     | 20℃        | 85°C           | 125℃       | -55°C        | 20℃       | 85℃        | 125℃     | 10kHz        | 100kHz       |
| 267M 1002 476 _ 1 2 720 _ 3                                | 10             | 13           | 8                    | 47             | D3       | 4.7        | 47             | 59         | 0.08         | 0.06      | 0.06       | 0.06     | 0.5          | 0.47         |
| 267M 1002 686 _ 1 2 720 _ 3                                | ↓ ↓            | ↓            | ↓                    | 68<br>100      | E<br>E   | 6.8<br>10  | 68<br>100      | 85<br>125  | 010          | 1000      | 0.08       | 0.08     | 0.4<br>0.3   | 0.38         |
| 2071VI 1002 107 120 _                                      | ↓<br>16        | 20           | 13                   | 1              | A        | 0.5        | 5              | 6.3        | 0.10         | 0.08      | 0.08       | 0.08     | 4.0          | 0.27<br>3.6  |
| 267M 1602 105 _1 2 3<br>267M 1602 155 _1 2 533 _3          | ↓<br>↓         | ↓            | ↓                    | 1.5            | A        | 0.5        | 5              | 6.3        | 0.08         | 0.04      | 0.06       | 0.06     | ↓.∪          | ↓            |
| 267M 1602 165 365 _ 3                                      | ,              | ,            | ,<br>,               | 3.3            | В        | 0.5        | 5              | 6.3        | ↓            | ↓         | ↓          | ↓        | 2.2          | 2.0          |
| 267M 1602 475 _1 2 533 _3                                  | $\downarrow$   | $\downarrow$ | 1                    | 4.7            | В        | 0.8        | 8              | 9.4        | 1            | ↓         | 1          | 1        | 1            | ↓            |
| 267M 1602 685 _ 1 _ 2                                      | ↓<br>·         |              | <b>1</b>             | 6.8            | C3       | 1.1        | 11             | 14         | <b>.</b>     | . ↓       | <b>1</b>   | <b>1</b> | 1.0          | 0.9          |
| 20/1VI 1002 100 120 _                                      | ↓              | ↓            | <b>↓</b>             | 10<br>15       | C3<br>C3 | 1.6<br>2.4 | 16<br>24       | 20<br>30   | ↓<br>        | ↓         | ļ .        | <b>↓</b> | 1.0<br>1.0   | 0.9<br>0.9   |
| 267M 1602 156 _1_2 720 _3<br>267M 1602 226 1 2 720 3       | 1              | 1            | 1                    | 22             | D3       | 3.5        | 35             | 44         | 1            | 1         | 1          | 1        | 0.8          | 0.9          |
| 267M 1602 226 720 _ 3                                      | Ĭ              | ,            | . ↓                  | 33             | D3       | 5.3        | 53             | 66         | Ĭ            | Ì         | ļ          | Ì        | 0.8          | 0.7          |
| 267M 1602 476 _1 2 720 _3                                  | ↓              | $\downarrow$ | 1                    | 47             | Ε        | 7.5        | 75             | 94         | ↓            | ↓         | ↓          | 1        | 0.4          | 0.38         |
| 267M 1602 686 _1_2 _3                                      |                | ↓            | <b>1</b>             | 68             | Н        | 11         | 110            | 136        | <b>.</b>     | . ↓       | <b>1</b>   | <b>↓</b> | ↓<br>•       | 0.36         |
| 267M 1602 686 1 2 720 3                                    | →<br>200       | ↓<br>26      | 1€                   | 68             | E        | 11         | 109            | 136        | ↓<br>0.0E    | ↓         | ↓<br>004   | 0.08     | 0.3<br>5.0   | 0.27         |
| 267M 2002 684 _ 1 _ 2                                      | 20             | 26<br>J      | 16<br>↓              | 0.68           | A<br>A   | 0.5<br>0.5 | 5<br>5         | 6.3<br>6.3 | 0.05<br>↓    | 0.04      | 0.04       | 0.05     | 5.0          | 4.5<br>↓     |
| 267M 2002 105 355 3                                        | Ĭ              | ,            | . ↓                  | 2.2            | В        | 0.5        | 5              | 6.3        | 0.08         | 0.06      | 0.06       | 0.06     | 3.0          | 2.7          |
| 267M 2002 335 _1 2 533 _3                                  | ↓              | ↓            | ↓                    | 3.3            | В        | 0.7        | 7              | 8.3        | 1            | . ↓       | 1          | 1        | 1            | 1            |
| 267M 2002 475 _1_2 720 _3                                  | <b>↓</b>       | <b>↓</b>     | 1                    | 4.7            | СЗ       | 0.9        | 9              | 12         | <b>↓</b>     | 1         | <b>↓</b>   | <b>1</b> | 1.0          | 0.9          |
| 267M 2002 685 _1 2 720 _3                                  | . ↓            | . ↓          | <b>↓</b>             | 6.8            | C3       | 1.4        | 14             | 17         | ↓            | ↓         | <b> </b>   | <b>1</b> | 1.0          | 0.9          |
| 20/10/2002 100 /20 _                                       | ↓              | <b>↓</b>     | <b>↓</b>             | 10<br>15       | C3<br>D3 | 2.0<br>3.0 | 20<br>30       | 25<br>38   | <b>↓</b>     | ↓         | <b>↓</b>   | <b>↓</b> | 1.0<br>0.8   | 0.9<br>0.72  |
| 267M 2002 156 _1 2 720 _3 267M 2002 226 _1 2 720 _3        | , t            | ↓<br>↓       | 1                    | 22             | D3       | 4.4        | 44             | 55         | 1            | 1         | ı ,        | 1        | 0.8          | 0.72         |
| 267M 2002 336 _1 2 720 _3                                  | į              | į            | ,<br>,               | 33             | E        | 6.6        | 66             | 83         | į            | į         | i          | į        | 0.4          | 0.38         |
| 267M 2002 476 <sup>1 2</sup> 720 <sup>3</sup>              | $\downarrow$   | $\downarrow$ | ↓                    | 47             | Ε        | 9.4        | 94             | 118        | $\downarrow$ | ↓         | 1          | 0.08     | 0.3          | 0.27         |
| 267M 2502 474 _ 1 _ 2 _ 3                                  | 25             | 32           | 20                   | 0.47           | A        | 0.5        | 5              | 6.3        | 0.05         | 0.04      | 0.04       | 0.05     | 5.0          | 4.5          |
| 20/10/2002/084 0333 _                                      | ↓ ↓            | ↓            | ↓                    | 0.68<br>1.5    | A<br>B   | 0.5<br>0.5 | 5<br>5         | 6.3<br>6.3 | ↓<br>0.08    | 0.06      | 0.06       | 0.06     | ↓<br>3.0     | ↓<br>2.7     |
| 267M 2502 155 _1 2 3<br>267M 2502 225 _1 2 533 _3          | , t            | ↓<br>↓       | 1                    | 2.2            | В        | 0.5        | 6              | 6.9        | 0.08         | 0.00      | ↓          | 1        | 3.∪          | ∠.1          |
| 267M 2502 225 565 3                                        | į              | į.           | ,<br>,               | 3.3            | C3       | 0.8        | 8              | 10         | į.           | į         | į          | į .      | 1.2          | 1.18         |
| 267M 2502 475 _1 2 720 _3                                  | ↓              | $\downarrow$ | 1                    | 4.7            | С3       | 1.2        | 12             | 15         | ↓            | ↓         | ↓          | 1        | ↓            | ↓            |
| 267M 2502 685 _1_2 734 _3                                  | <b>↓</b>       | ↓<br>·       | <b>↓</b>             | 6.8            | C3       | 1.7        | 17             | 21         | <b>↓</b>     | <b>↓</b>  | <b>↓</b>   | <b>↓</b> | <b>↓</b>     | 1.17         |
| 267M 2502 685 _1 2 720 _3                                  | ↓              | ↓            | ↓                    | 6.8            | D3       | 1.7        | 17             | 21         | <b>1</b>     | ↓         | <b>1</b>   | <b>1</b> | 0.8          | 0.72         |
| 267M 2502 106 _1 2 720 _3 267M 2502 156 _1 2 734 _3        | <b>↓</b>       | .l.          | 1                    | 10<br>15       | D3<br>D3 | 2.5<br>3.8 | 25<br>38       | 31<br>47   | 1            |           | 1          | .I.      | 0.8<br>0.8   | 0.72<br>0.72 |
| 267M 2502 136 734 _<br>267M 2502 226 _ 1 _ 2 720 _ 3       | ,              | ,            | . ↓                  | 22             | E        | 5.5        | 55             | 69         | Ì            | Ĭ         | į          | Ì        | 0.4          | 0.39         |
| 267M 2502 336 <sup>1 2</sup> <sup>3</sup>                  | ↓              | ↓            | ↓                    | 33             | Н        | 8.3        | 83             | 103        | 1            | ↓         | Į.         | 1        | 0.7          | 0.63         |
| 267M 3502 104 _ 1 _ 2 _ 3                                  | 35             | 44           | 28                   | 0.1            | Α        | 0.5        | 5              | 6.3        | 0.05         | 0.04      | 0.04       | 0.05     | 10.0         | 9.0          |
| 267M 3502 154 _ 1 _ 2 _ 3                                  | ↓              | ↓            | <b>1</b>             | 0.15           | A        | 0.5        | 5              | 6.3        | <b>+</b>     | ↓         | 1          | <b>1</b> | ↓<br>↓       | ↓<br>4.5     |
| 20/10/3502 224                                             | ↓              | ↓            | ↓                    | 0.22<br>0.33   | A<br>A   | 0.5<br>0.5 | 5<br>5         | 6.3<br>6.3 | <b>↓</b>     | ↓         | <b>↓</b>   | <b>↓</b> | 5.0          | 4.5<br>↓     |
| 267M 3502 334 _1 2 3<br>267M 3502 474 _1 2 533 _3          | ,              | ,            | ļ                    | 0.47           | A        | 0.5        | 5              | 6.3        | į.           | Ĭ         | į          | Ţ        | ì            | į.           |
| 267M 3502 474 <sup>1 2</sup> <sup>3</sup>                  | ↓              | ↓            | ↓                    | 0.47           | В        | 0.5        | 5              | 6.3        | 1            | 1         | 1          | 1        | 3.0          | 2.7          |
| 267M 3502 684 _1_23                                        | ↓              | ↓            | <b>↓</b>             | 0.68           | В        | 0.5        | 5              | 6.3        | 1            | ↓         | Į.         | 1        | 1            | <b>↓</b>     |
| 267M 3502 105 _ 1 _ 2 _ 3                                  | . ↓            | ↓            | <b>1</b>             | 1              | В        | 0.5        | 5              | 6.3        | ↓<br>↓       | ↓<br>0.00 | ↓<br>↓     | <b>↓</b> | <b>1</b>     | <b>+</b>     |
| 267M 3502 155 _1_2 533 _3<br>267M 3502 155 _1_2 720 _3     | ↓              | ↓<br>↓       | ↓                    | 1.5<br>1.5     | B<br>C3  | 0.5<br>0.5 | 5<br>5         | 6.6<br>6.6 | 0.08         | 0.06      | 0.06       | 0.06     | ↓<br>1.2     | ↓<br>1.18    |
| 267M 3502 155 720 _ 3                                      | ļ              | ,            | <b>1</b>             | 2.2            | C3       | 0.8        | 8              | 9.6        | ,            | Ì         | ļ          | ,        | ↓<br>↓       | 1.10         |
| 267M 3502 335 _1_2 734 _3                                  | ↓              | ↓            | ↓                    | 3.3            | C3       | 1.2        | 12             | 14         | ,            | ↓         | į į        | ,<br>,   | į            | į            |
| 267M 3502 335 _1_2 720 _3                                  | <b>↓</b>       | ↓<br>·       | <b>↓</b>             | 3.3            | D3       | 1.2        | 12             | 14         | <b>↓</b>     | <b>↓</b>  | <b>↓</b>   | <b>↓</b> | 0.9          | 0.81         |
| 267M 3502 475 1 2 734 3                                    | . ↓            | . ↓          | ↓                    | 4.7            | C3       | 1.6        | 16             | 21         | <b>↓</b>     | ↓         | <b>1</b>   | <b>1</b> | 1.2          | 1.17         |
| 267M 3502 475 _1_2 720 _3<br>267M 3502 685 _1_2 720 _3     | 1              | <b>↓</b>     | <u>↓</u>             | 4.7<br>6.8     | D3<br>D3 | 1.6<br>2.4 | 16<br>24       | 21<br>30   | <b>↓</b>     | . T       | ↓          | <b>1</b> | 0.9<br>0.9   | 0.81<br>0.81 |
| 267M 3502 685 _ 1                                          | <b>*</b>       | ,<br>,       | <b>1</b>             | 10             | D3       | 3.5        | 35             | 44         | <b>*</b>     | ı ,       | <b>*</b>   | <b>1</b> | 0.9          | 0.81         |
| 267M 3502 106 734 _<br>267M 3502 106 _ 1 _ 2 720 _ 3       | ļ              | ļ            | ,<br>,               | 10             | E        | 3.5        | 35             | 44         | ļ            | į         | į.         | ↓<br>↓   | 0.4          | 0.38         |
| 267M 3502 156 _1_2 720 _3                                  | ↓              | <b>↓</b>     | <b>↓</b>             | 15             | Ε        | 5.3        | 55             | 66         | <b>1</b>     | 1         | ↓          | ↓        | 1            | 0.39         |
| 267M 3502 226 _1_23                                        | <b>↓</b>       | ↓<br>        | <b>↓</b>             | 22             | Н        | 7.7        | 77             | 96         | ↓<br>0.05    | <b>→</b>  | ↓<br>○ ○ 1 | <b>↓</b> | 0.7          | 0.63         |
| 267M 5002 473 _ 1 2 3                                      | 50<br>.l.      | 63<br>↓      | 40<br>↓              | 0.05<br>0.1    | A<br>A   | 0.5<br>0.5 | 5<br>5         | 6.3<br>6.3 | 0.05<br>↓    | 0.04      | 0.04       | 0.05     | 12.0<br>10.0 | 12.0<br>9.0  |
| 267M 5002 104 _1 _2 _3<br>267M 5002 154 _1 _2 533 _3       | ↓<br>↓         | ↓<br>↓       | <b>1</b>             | 0.1            | A        | 0.5        | 5              | 6.3        | <b>↓</b>     | ↓         | <b>1</b>   | <b>1</b> | 10.0         | 9.0          |
| 267M 5002 154 333 3                                        | Ţ              | ļ            | ↓<br>↓               | 0.15           | В        | 0.5        | 5              | 6.3        | ,            | į.        | ļ          | ↓<br>↓   | 5.0          | 4.5          |
| 267M 5002 224 _ <sup>1</sup> _ <sup>2</sup> _ <sup>3</sup> | ↓              | <b>↓</b>     | <b>↓</b>             | 0.22           | В        | 0.5        | 5              | 6.3        | <b>1</b>     | 1         | <b>↓</b>   | <b>+</b> | 1            | 1            |
| 267M 5002 334 _1_23                                        | . ↓            | <b>↓</b>     | <b>↓</b>             | 0.33           | В        | 0.5        | 5              | 6.3        | <b>↓</b>     | . ↓       | <b>↓</b>   | <b>1</b> | 3.0          | 2.7          |
| 267M 5002 474 _ 1 _ 2 _ 533 _ 3                            | ↓ .            | <b>↓</b>     | ↓                    | 0.47           | B<br>C3  | 0.5<br>0.5 | 5<br>5         | 6.3<br>6.3 | ↓            | ↓         |            | <b> </b> | $\downarrow$ | ↓<br>2.7     |
| 267M 5002 474 _1 2 720 _3 267M 5002 684 _1 2 720 _3        | 1              | ↓ ↓          | <b>↓</b>             | 0.47<br>0.68   | C3       | 0.5        | 5              | 6.3        | <b>↓</b>     | 1         | 1          | 1        | <b>1</b>     | 2.7          |
| 267M 5002 105 _ 1 _ 2 720 _ 3                              | Ţ              | į            | <b>↓</b>             | 1              | C3       | 0.5        | 5              | 6.3        | <b>↓</b>     | Į.        | ,          | <b>↓</b> | į.           | 2.7          |
| 267M 5002 155 _1_2 734 _3                                  | ↓              | ↓            | 1                    | 1.5            | C3       | 0.8        | 8              | 9.4        | 0.08         | 0.06      | 0.06       | 0.06     | 1.2          | 1.2          |
| 267M 5002 155 <sup>1 2</sup> 720 <sup>3</sup>              | <b>↓</b>       | <b>↓</b>     | 1                    | 1.5            | D3       | 0.8        | 8              | 9.4        | <b>↓</b>     | <b>↓</b>  | Į.         | <b>↓</b> | 1.0          | 0.9          |
| 267M 5002 225 1 2 720 3                                    | . ↓            | . ↓          | <b>↓</b>             | 2.2            | D3       | 1.1        | 11             | 14         | <b>↓</b>     | <b>↓</b>  | <b>1</b>   | <b>+</b> | 1.0          | 0.9          |
| 267M 5002 335 1 2 734 3                                    | ↓              | . ↓          | Capaa                | 3.3            | D3       | 1.7        | 17             | 21         | ↓            | . ↓       | ↓          | . ↓      | 0.9          | 0.81         |


 $\label{eq:local_state} $$ $\mathbb{V}_R = \mathbb{R}_s = \mathbb{V}_s = \mathbb$ 

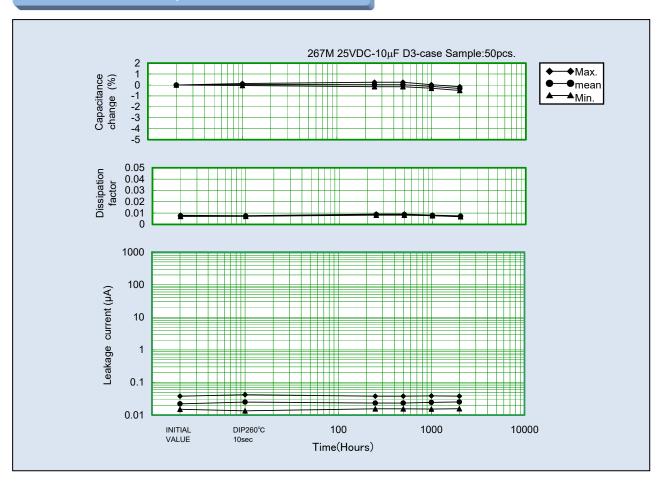
# PERFORMANCE


| No. |                                                                                   | Ite                    | em                                                                   | Performance                                                                                                                                                                                         | Test method                                                                                                                                                                                                                                                         |
|-----|-----------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Leaka                                                                             | ge Curre               | nt (μA)                                                              | Shall not exceed 0.01 CV or 0.5 whichever is greater.                                                                                                                                               | JIS C 5101-1, 4.9<br>Applied Voltage :<br>Rated Voltage for 5 min.<br>Temperature : 20°C                                                                                                                                                                            |
| 2   | Capac                                                                             | Capacitance (μF)       |                                                                      | Shall be within tolerance of the nominal value specified.                                                                                                                                           | JIS C 5101-1, 4.7<br>Frequency : 120 Hz± 20%<br>Voltage : 0.5Vrms+1.5 ~2VDC<br>Temperature : 20°C                                                                                                                                                                   |
| 3   |                                                                                   | ation Fa               | ctor                                                                 | Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS.                                                                                                               | JIS C 5101-1, 4.8<br>Frequency : 120 Hz± 20%<br>Voltage : 0.5Vrms+1.5 ~2VDC<br>Temperature : 20°C                                                                                                                                                                   |
| 4   | ESR<br>(Equiv                                                                     | alent sei              | ries resistance)                                                     | Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS.                                                                                                               | Frequency : 10 kHz or 100kHz<br>Temperature : 20°C                                                                                                                                                                                                                  |
|     |                                                                                   | cteristics<br>n and Lo | wTemperature                                                         |                                                                                                                                                                                                     | JIS C 5101-1, 4.29                                                                                                                                                                                                                                                  |
|     | J                                                                                 | Step1                  | Leakage Current Capacitance Dissipation Factor                       | Shall not exceed the value in No.1. Shall be within the specified tolerance. Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS.                                  | Measuring temperature : 20 ± 2°C                                                                                                                                                                                                                                    |
|     |                                                                                   | Step2                  | Capacitance<br>Change<br>Dissipation<br>Factor                       | Shall be within ± 10% of the value at Step 1.  Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS.                                                                | Measuring temperature : -55±3 °C                                                                                                                                                                                                                                    |
|     |                                                                                   | Step3                  | Leakage<br>Current<br>Capacitance<br>Change<br>Dissipation           | Shall not exceed the value in No.1. Shall be within ± 2% of the value at Step 1.  Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD                                       | Measuring temperature : 20 ± 2°C                                                                                                                                                                                                                                    |
| 5   |                                                                                   | Step4                  | Factor Leakage Current Capacitance Change Dissipation Factor         | PRODUCTS.  Shall not exceed 0.1 CV or 5 whichever is greater.  Shall be within ± 10% of the value at Step 1.  Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS. | Measuring temperature : 85±2°C                                                                                                                                                                                                                                      |
|     |                                                                                   | Step5                  | Leakage<br>Current<br>Capacitance<br>Change<br>Dissipation<br>Factor | Shall not exceed 0.125 CV or 6.3 whichever is greater. Shall be within ± 15% of the value at Step 1.  Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS.         | Measuring temperature : 125±2°C Measuring voltage : Derated voltage at 125°C                                                                                                                                                                                        |
|     |                                                                                   | Step6                  | Leakage<br>Current<br>Capacitance<br>Change<br>Dissipation<br>Factor | Shall not exceed the value in No.1. Shall be within ± 2% of the value at Step 1.  Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS.                             | Measuring temperature : 20 ± 2°C                                                                                                                                                                                                                                    |
| 6   | Surge                                                                             |                        | Leakage Current Capacitance Change Dissipation Factor Appearance     | Shall not exceed the value in No.1.  Shall be within ± 5% of initial value.  Shall not exceed the value in No.3.  There shall be no evidence of mechanical damage.                                  | JIS C 5101-1, 4.26 Test temperature and applied voltage: To each half of specimens · 85 ± 2°C, · 125 ± 2°C Applied Voltage:DC surge voltage Series protective resistance: 1000 Ω                                                                                    |
| 7   | Shear Test                                                                        |                        |                                                                      | No exfoliation between lead terminal and board.                                                                                                                                                     | Discharge resistance : 1000 Ω  JIS C 5101-1, 4.34  Capacitors mounted under conditions JIS C 5101-1, 4.33 are used as specimens.  • Soldering : Indirect heating  • Temperature : 240 ± 10°C  • Duration : 10s or less Applied pressure : 5N  Duration : 10 ± 1 s   |
| 8   | Substrate Bending Test  Capacitance Appearance  Vibration  Capacitance Appearance |                        |                                                                      | Initial value to remain steady during measurement. There shall be no evidence of mechanical damage.                                                                                                 | JIS C 5101-1, 4.35<br>Bending : 3 mm<br>Duration:5s                                                                                                                                                                                                                 |
| 9   |                                                                                   |                        |                                                                      | Initial value to remain steady during measurement. There shall be no evidence of mechanical damage.                                                                                                 | JIS C 5101-1, 4.17 Frequency range: 10 ~ 55 Hz Swing width: 1.5 mm Vibration direction: 3 directions with mutually right-angled Duration: 2 hours in each of these mutually perpendicular directions (total 6 hours) Mounting: Solder terminal to the printed board |

| No. | Ite                                   | em                                                                                 | Performance                                                                                                                                                                                                            | Test method                                                                                                                                                                                                                  |
|-----|---------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10  | Shock                                 | ,                                                                                  | There shall be no intermittent contact of 0.5 ms or greater, short, or open. Nor shall there be any spark discharge, insulation breakdown, or evidence of mechanical damage.                                           | JIS C 5101-1, 4.19 Peak acceleration : 490 m/s <sup>2</sup> Duration : 11 ms Wave form : Half-sine                                                                                                                           |
| 11  | Solderability                         |                                                                                    | Shall be covered to over 3/4 of terminal surface by new soldering.                                                                                                                                                     | JIS C 5101-1, 4.15 Solder temperature : 230 ± 5°C Dipping time : 3 to 5 s Dipping depth : Terminal shall be dipped into melted solder.                                                                                       |
| 12  | Resistance<br>to<br>Soldering<br>Heat | Leakage<br>Current<br>Capacitance<br>Change<br>Dissipation<br>Factor<br>Appearance | Shall not exceed the value in No.1.  Shall be within ± 3% of initial value. For 6.3V-100µF (H) only within ±5% of initial value. Shall not exceed the value in No.3.  There shall be no evidence of mechanical damage. | JIS C 5101-1, 4.14  One of the following methods  (a) Complete dipping method  Solder temperature: 260 ± 5°C  Dipping time: 10 ± 1 s  (b) Terminal dipping method  Solder temperature: 260 ± 5°C  Dipping time: 10 ± 1 s     |
| 13  | Component<br>solvent<br>resistance    | Leakage Current Capacitance Change Dissipation Factor                              | Shall not exceed the value in No.1.  Shall be within ± 3% of initial value.  Shall not exceed the value in No.3.                                                                                                       | JIS C 5101-1, 4.31 Temperature: 23 ± 5°C Dipping time: 5 ± 0.5 min. Conditioning: JIS C 0052 method 2 Solvent: 2-propanol (Isopropyl alcohol)                                                                                |
| 14  | Solvent<br>resistance<br>of marking   | Visual<br>examination                                                              | After the test the marking shall be legible.                                                                                                                                                                           | JIS C 5101-1, 4.32 Temperature: 23 ± 5°C Dipping time: 5 ± 0.5 min. Conditioning: JIS C 0052 method 1 Solvent: 2-propanol (Isopropyl alcohol) Rubbing material: cotton wool                                                  |
| 15  | Rapid<br>Change of<br>Temperature     | Leakage Current Capacitance Change Dissipation Factor Appearance                   | Shall not exceed the value in No.1.  Shall be within ± 5% of initial value.  Shall not exceed the value in No.3.  There shall be no evidence of mechanical damage.                                                     | JIS C 5101-1, 4.16<br>Step 1 : -55 ±3 °C, 30 ± 3 min.<br>Step 2 : 25 ±3 °C, 3 min. max.<br>Step 3 : 125 ± 2 °C, 30 ± 3 min.<br>Step 4 : 25 ±3 °C, 3 min. max.<br>Number of cycles : 5                                        |
| 16  | Damp heat,<br>Steady state            | Leakage Current Capacitance Change Dissipation Factor Appearance                   | Shall not exceed the value in No.1.  Shall be within ± 5% of initial value.  Shall not exceed the value in No.3.  There shall be no evidence of mechanical damage.                                                     | JIS C 5101-1, 4.22<br>Temperature : $40 \pm 2^{\circ}$ C<br>Moisture : $90 \sim 95\%$ RH<br>Duration : $500^{+0.4}_{0.0}$ h                                                                                                  |
| 17  | Endurance                             | Leakage Current Capacitance Change Dissipation Factor Appearance                   | Shall not exceed 125% of the value in No.1.  Shall be within ± 10% of initial value.  Shall not exceed the value in No.3.  There shall be no evidence of mechanical damage.                                            | JIS C 5101-1, 4.23 Test temperature and applied voltage: $85 \pm 2^{\circ}$ C and rated voltage or $125 \pm 3^{\circ}$ C and $2/3 \times$ rated voltage Duration: $2000^{+6/2}$ h Power supply impedance: $3 \Omega$ or less |


# FREQUENCY CHARACTERISTICS




# **TEMPERATURE CHARACTERISTICS**



## DAMP HEAT, STEADY STATE 40°C, 95%RH



# **ENDURANCE** 85°C, RATED VOLTAGE





#### Application Notes for Tantalum Solid Electrolytic Capacitor

#### 1. Operating Voltage

Tantalum Solid Electrolytic Capacitor shall be operated at the rated voltage or lower.

Rated voltage: The "rated voltage" refers to the maximum DC voltage that is allowed to be continuously applied between the capacitor terminals at the rated temperature.

Surge voltage: The "surge voltage" refers to the voltage that is allowed to be instantaneously applied to the capacitor at the rated temperature or the maximum working temperature. The capacitor shall withstand the voltage when a 30-second cycle of application of the voltage through a 1000  $\Omega$  series resistance is repeated 1000 times in 6-minute periods.

When designing the circuit, the equipment's required reliability must be considered and appropriate voltage derating must be performed.

#### 2. Application that contain AC Voltage

Special attention to the following 3 items.

- (1) The sum of the DC bias voltage and the positive peak value of the AC voltage should not exceed the rated voltage.
- (2) Reverse voltage should not exceed the allowable values of the negative peak AC voltage.
- (3) Ripple current should not exceed the allowable values.

Tantalum solid electrolytic capacitor is polarity. Please do not impress reverse voltage. As well, please confirm the potential of the tester beforehand when both ends of the capacitor are checked with the tester etc.

#### 4. Permissible Ripple Current

The permissible ripple current and voltage at about 100 kHz or higher can be determined by the following formula from the permissible power loss (Pmax value)shown in Table 1 and the specified ESR value. However, when the expected operating temperature is higher than room temperature, determine the permissible values multiplying the Pmax value by the specified multiplier (Table 2). For the permissible values at different frequencies, consult our Sales Department.

$$P=l^{-2}$$
 xESR or  $P=-\frac{E^2 \times ESR}{Z^2}$  Permissible ripple current Imax=  $\sqrt{\frac{P \max}{ESR}}$  (Arms)  
Permissible ripple voltage Emax=  $\sqrt{\frac{P \max}{ESR}} \times Z$ 

Imax : Permissible ripple current at regulated frequency (Arms : RMS value) Emax: Permissible ripple voltage at regulated frequency (Vrms: RMS value)

Pmax: Permissible power loss (W)

 $\mathsf{ESR}: \mathsf{Specified} \; \mathsf{ESR} \; \mathsf{value} \; \mathsf{at} \; \mathsf{regulated} \; \mathsf{frequency} \; (\Omega)$ 

Z : Impedance at regulated frequency (Ω)

Table 1 Permissible power loss

| Case Code      | Pmax (W) |
|----------------|----------|
| Α              | 0.045    |
| В              | 0.050    |
| C <sub>3</sub> | 0.065    |
| D <sub>3</sub> | 0.085    |
| Н              | 0.100    |
| E              | 0.105    |

Note: Above values are measured at 0.8t glass epoxy board mounting in free air and may be changed depending on the kind of board, packing density, and air convection condition. Please consult us if calculated power loss value is different from above list of P max value.

Table 2 Pmax multiplier at each operating temperature

| Multiplier |
|------------|
| 1.0        |
| 0.9        |
| 0.8        |
| 0.4        |
|            |

#### 5. Application on low-impedance circuit

The failure rate of low impedance circuit at  $0.1\Omega/V$  is about five times greater than that of a  $1\Omega/V$  circuit. To curtail this higher failure rate, tantalum capacitors used in low impedance circuits, such as filters for power supplies, particularly switching power supplies, or for noise bypassing, require that operating voltage be derated to less than half of the rated voltage. Actually, less than 1/3 of the rated voltage is recommended.

#### 6. Non Polar Application(BACK TO BACK)

The capacitor cannot be used as a non-polar unit.

#### 7. Soldering

#### 7.1. Preheating

To obtain optimal reliability and solderability conditions, capacitors should be pre-heated at 130 to 200 °C for approximately 60 to 120

#### 7.2. Soldering

The body of the capacitor shall not exceed 260 °C during soldering.

#### (1) Reflow Soldering

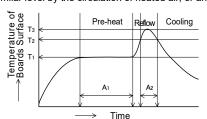
Reflow soldering is a process in which the capacitors are mounted on a printed board with solder paste. There are two methods of Reflow Soldering: Direct and Atmospheric Heat.

· Direct Heat (Hot plate)

During the Direct Heat method, the capacitor has been positioned on a printed board, which is then placed upon a hot plate. The capacitor maintains a lower temperature than the substrate, which in turn stays at a lower temperature than the hot plate.

Atmospheric Heat

a) VPS (Vapor Phase Soldering)


During VPS, the substrate is heated by an inert liquid with a high boiling point. The temperature of the capacitor's body and the temperature of the substrate are about the same as the atmosphere. This temperature should be below 240°C.

Due to the heat absorption of the capacitor's body, the internal temperature of the capacitors may be 20 ~ 30°C higher than the setting temperature and may exceed 260°C.

Temperature control is crucial in maintaining a temperature of 260 °C or lower.

#### c) Convention Oven

An infrared ray is the main source of heat in this process. The temperature of the substrate and the capacitors can be maintained at a similar level by the circulation of heated air, or an inert gas.



| Temperature    | Time                   |
|----------------|------------------------|
| T1=130°C~200°C | A1=60~120sec.          |
| T2=220°C~230°C | A2<60秒以下               |
| T3=~260°C      | 10sec. or less than 10 |

Number of times:2times max.

#### (2) Soldering with a Soldering Iron

Soldering with a soldering iron cannot be recommended due to the lack of consistency in maintaining temperatures and process times. If this method should be necessary, the iron should never touch the capacitor's terminals, and the temperature of the soldering iron should never exceed 350°C. The application of the iron should not exceed 5 seconds.

(3) Please consult us for other methods.

#### 8. Cleaning

Cleaning by organic solvent may damage capacitor's appearance and performance. However, our capacitors are not effected even when soaked at 20 ~ 30°C 2-propanol for 5 minutes. When introducing new cleaning methods or changing the cleaning term, please consult us.

#### 9. Protective Resin Coating

After components are assembled to substrate, a protective resin coating is sometimes applied. As this resin coating cures, it gives mechanical and thermal stress to Tantalum capacitors. This stress can cause damage to the capacitors, which affects their reliability. Before using a resin coating, proper research must be done in regards to the material and process to insure that excessive stress will not be applied to capacitors and other components.

#### 10. Vibration

Approximately 300 G shall be applied to a capacitor, when dropped from 1 meter to a concrete floor.

Although capacitors are made to withstand this drop test, stress from shock due to falling or striking does cause damage to the capacitors and increases failure rates. Do not subject capacitors to this type of mechanical stress.

#### 11. Ultrasonic cleaning

Matsuo does not recommend Ultrasonic cleaning. This may cause damage to the capacitors, and may even cause broken terminals. If the Ultrasonic cleaning process will be used, please note the following:

- (1)The solvent should not be boiled. (Lower the ultrasonic wave output or use solvent with The high boiling point.)
- (2)The recommended wattage is less than 0.5 watts per cm<sup>2</sup>.
- (3)The cleaning time should be kept to a minimum. Also, samples must be swang in the solvlent. Please consult us.

#### 12. Additional Notes

- · When more than one capacitor is connected in series, a resistor that can distribute the voltage equally to the capacitors shall beconnected in parallel.
- $\cdot$  The capacitor cases shall not be cut even if the mounting space is insufficient.
- During a customers aging process, voltage should remain under the rated voltage at all times.
- · Capacitors should never be touched or manipulated while operating.
- · Capacitors are not meant to be dismantled.
- · When testing capacitors, please examine the power source before conducting test to insure the tester's polarity and applied voltage.
- · In the event of a capacitor burning, smoking, or emitting an offensive smell during operation, please turn the circuit "off" and keep hands and face away from the burning capacitor.
- · If a capacitor be electrical shorted, it becomes hot, and the capacitor element may ignite. In this case, the printed board may be burnt out.
- · Capacitors should be stored at room temperature under low humidity. Capacitors should never be stored under direct sunlight, and should be stored in an environment containing dust.
- · If the capacitors will be operated in a humid environment, they should be sealed with a compound under proper conditions.
- Capacitors should not be stored or operated in environments containing acids, alkalis or active gasses.
- · When capacitors are disposed of as "scrap" or waste, they should be treated as Industria Waste since they contain various metals and polymers.
- · Capacitors submitted as samples should not be used for production purposes.
- The plastic reel (made of PS) used for packaging the product is intended for use in ambient temperatures (5-35°C). To prevent issues during automated insertion due to reel deformation or other factors, please keep the reel away from direct sunlight and heat sources, and ensure it does not reach high temperatures (above 60°C), including during transportation.

These application notes are prepared based on "Guideline of notabilia for fixed tantalum electrolytic capacitors with solid electrolyte for use in electronic equipment" (RCR-2368) issued by Japan Electronics and Information Technology Industries Association (JEITA).

For the details of the instructions (explanation, reasons and concrete examples), please refer to this guideline, or consult our Sales Department.



# MATSUO ELECTRIC CO., LTD.

Please feel free to ask our Sales Department for more information on Tantalum Solid Electrolytic Capacitor.

Overseas Sales 5-3,3-Chome, Sennari-cho, Toyonaka-shi, Osaka 561-8558, Japan Tel:06-6332-0883 Fax:06-6332-0920 Head office 5-3,3-Chome, Sennari-cho, Toyonaka-shi, Osaka 561-8558, Japan Tel:06-6332-0871 Fax:06-6331-1386

URL https://www.ncc-matsuo.co.jp/

Specifications on this catalog are subject to change without prior notice. Please inquire of our Sales Department to confirm specifications prior to use.

| 市場          | 適用<br>用途 | 用途                                                                                               |                                                                                                                      | 推奨品種                                               | 推奨品種                                                                       |
|-------------|----------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|
| III JA      | 分類       | 概要                                                                                               | 代表的なアプリケーション例                                                                                                        | チップタンタルコンデンサ                                       | 回路保護素子                                                                     |
| 高信頼度<br>機器  | 1        | ・高度な安全性や信頼性が要求される機器     ・製品の保守交換が不可能な機器、製品の故障が人命に直接かかわる、または、致命的なシステムダウンを引 き起こす可能性がある機器           | 宇宙開発機器関連(衛星、ロケット、人工衛星)     ・航空・防衛システム     ・原子力・火力・水力発電システム                                                           | 267型Pシリーズ                                          | 該当なし                                                                       |
|             | 2        | <ul> <li>信頼性が重視される機器</li> <li>製品の保守交換が極めて困難な機器や、製品の故障が人命に影響する、あるいは故障の<br/>範囲が広範囲である機器</li> </ul> | 自動車および鉄道・船舶等の輸送機器の車両制御<br>(エンジン制御、駆動制御、プレーキ制御)     新幹線・主要幹線の運行制御システム                                                 | 267型Nシリーズ<br>271型Nシリーズ                             | JAG型Nシリーズ<br>JAJ型Nシリーズ<br>JAK型Nシリーズ<br>JHC型Nシリーズ<br>KAB型Nシリーズ<br>KVA型Nシリーズ |
| 車載・<br>産業機器 | 3-A      | <ul><li>車載用だが一般電装機器で車室内環境において使用される機器</li></ul>                                                   | ・エアコン,カーナビ等の車室内搭載部品、 車載用通信機器                                                                                         |                                                    | KAB型Mシリーズ                                                                  |
|             | 3-B      | ・製品の保守交換が可能な機器や、製品の故障が人命に影響しないが故障による<br>システムダウンの損失が大きく保全管理が要求される機器                               | ・家庭用/ビル用等のセキュリティ管理システム<br>・工業用ロボットや工作機械等の制御機器                                                                        | 267型M.Eシリーズ<br>279型<br>281型M.Eシリーズ<br>TCA型<br>TCD型 | JHC型                                                                       |
| 汎用機器        | 4        | ・最先端技術を積極的に適用する小型・薄型品<br>・製品の保守交換が可能な機器や、製品の故障によるシステムダウンが部分的な機器向けの<br>市場で広く使用されることを想定した製品        | <ul> <li>スマートフォン、携帯電話、モバイルPC(タブレット)、電子辞書</li> <li>デスクトップPC、ノートPC、ホームネットワーク</li> <li>アミューズメント機器(パチンコ、ゲーム機)</li> </ul> | 251型Mシリーズ<br>267型Cシリーズ<br>TCB型                     | JAE型、JAG型<br>JAJ型、JAK型<br>KAB型<br>KAB型Tシリーズ<br>KVA型                        |

| Market                     | Application classification | Use                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                     | Recommendation Type                                                | Recommendation Type                                                                                                          |
|----------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| IVIAI KEL                  | by use                     | Outline                                                                                                                                                                                                                                                                  | Typical example of application                                                                                                                                                                      | Chip Tantalum Capacitors                                           | Circuit Protection Components                                                                                                |
| High reliability apparatus | 1                          | - Apparatus in which advanced safety and reliability are demanded Whether failure of the apparatus which cannot maintenance exchange products, and a product is direct for a human life, apparatus which changes or may cause a fatal system failure.                    | - Space development apparatus relation (Satellite, Rocket, Artificial Satellite)<br>- Aviation and a defensive system<br>- Atomic power, fire power, and a water-power generation system            | Type 267 P Sereis                                                  | With no relevance                                                                                                            |
| In-vehicle                 | 2                          | - Apparatus in which reliability is important The apparatus in which maintenance exchange of a product is very difficult, and failure of a product influence a human life, or the range of failure is wide range.                                                        | - Vehicles control of transport machines, such as a car, and a railroad, a vessel (Engine control, drive control, brake control) - The operation control system of the Shinkansen and a main artery | Type 267 N Sereis<br>Type 271 N Sereis                             | Type JAG N series Type JAJ N series Type JAK N series Type JAK N series Type HC N series Type KAB N series Type KAB N series |
| Industrial<br>apparatus    | 3-A                        | - General electrical equipment designed for use in vehicles but used in the interior environment                                                                                                                                                                         | Vehicle indoor loading parts, such as an air-conditioner and car navigation,<br>and in-vehicle communication facility                                                                               |                                                                    | Type KAB M series                                                                                                            |
|                            | 3-B                        | -Apparatus which can maintenance exchange products, and apparatus in which the loss of the system failure is large although failure of a product does not influence a human life, and maintenance engineering is demanded                                                | - Security management system for home/buildings etc Control apparatus, such as Industrial use robots and a machine tool etc.                                                                        | Type 267 M.E Sereis Type 279 Type 281 M.E Sereis Type TCA Type TCD | Туре ЈНС                                                                                                                     |
| Apparatus in general       | 4                          | The small size and the thin article which applies leading-edge technology positively The product supposing being used widely in the market for the apparatus which can maintenance exchange products, and apparatus with a partial system failure by failure of product. | -Smart phone. Mobile phone. Mobile PC (tablet), Electronic dictionary<br>- Desktop PC, Notebook PC, Home network<br>- Amusement apparatus (Pachinko,Game machine)                                   | Type 251 M Series<br>Type 267 C Series<br>Type TCB                 | Type JAE, Type JAG<br>Type JAJ, Type JAK<br>Type KAB<br>Type KAB T series<br>Type KVA                                        |

#### テーピング数量・リール寸法

#### **Taping Quantity And Carrier Tape Dimensions**

チップタンタルコンデンサ **Chip Tantalum Capacitors** 

定格: 251型Mシリーズ, TCB型 Type: 251 M Series, TCB

| ケース記号<br>Case Code | ケースサイズ<br>Case size | W<br>(mm) | F<br>(mm) | E<br>(mm) | P <sub>1</sub> (mm) | P <sub>2</sub>                  | P <sub>0</sub> (mm) | $\phi  D_0$ (mm)                 | 包装数/リール(個)<br>Quantity/Reel (pcs) |
|--------------------|---------------------|-----------|-----------|-----------|---------------------|---------------------------------|---------------------|----------------------------------|-----------------------------------|
| 0000 0000          |                     | (11111)   | (11111)   | (111111)  | (111111)            | (11111)                         | (11111)             | (11111)                          | φ180                              |
| U                  | 1.0×0.5             | 8.0±0.3   | 3.5±0.05  | 1.75±0.1  | 2.0±0.05            | 2.0±0.05<br>4.0±0.1<br>2.0±0.05 |                     | 1.55±0.03                        | 10,000                            |
| М                  | 1.6×0.8             |           |           |           | 4.0±0.1             |                                 | 4.0±0.1             |                                  |                                   |
| S                  | 2.0×1.25            |           |           |           |                     |                                 |                     | 1.5 <sup>+0.1</sup> <sub>0</sub> | 3,000                             |
| Α                  | 3.2×1.6             |           |           |           |                     |                                 |                     |                                  |                                   |

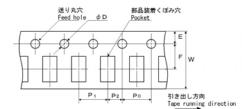
定格: 267型Mシリーズ, 267型Eシリーズ, 267型Pシリーズ, 271Nシリーズ

279型Mシリーズ, 281型Mシリーズ, 281型Eシリーズ Type: 267 M Series, 267 E Series, 267 P Series, 271 N Series

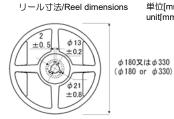
279 M Series, 281 M Series, 281 E Series

|                    | 273 W Genes, 201 W Genes, 201 L Genes |           |           |           |                     |                     |                     |                                   |                     |            |  |  |  |
|--------------------|---------------------------------------|-----------|-----------|-----------|---------------------|---------------------|---------------------|-----------------------------------|---------------------|------------|--|--|--|
| ケース記号<br>Case Code | ケースサイズ<br>Case size                   | W<br>(mm) | F<br>(mm) | E<br>(mm) | P <sub>1</sub> (mm) | P <sub>2</sub> (mm) | P <sub>0</sub> (mm) | D <sub>0</sub> (mm)               | 包装数/リ<br>Quantity/f |            |  |  |  |
| OddC OddC          | Odde dize                             | (11111)   | (111111)  | (111111)  | (111111)            | (111111)            | (111111)            | (111111)                          | φ 180               | $\phi$ 330 |  |  |  |
| Α                  | 3.2×1.6                               | 8.0±0.3   | 3.5±0.05  | 1.75±0.1  | 4.0±0.1             | 2.0±0.05            | 4.0±0.1             | φ1.5 <sup>+0.1</sup> <sub>0</sub> | 2,000               | 9,000      |  |  |  |
| В                  | 3.5×2.8                               |           |           |           |                     |                     |                     |                                   |                     | 8,000      |  |  |  |
| C3                 | 6.0×3.2                               |           | 5.5±0.05  |           |                     |                     |                     |                                   | 500                 | 3,000      |  |  |  |
| D3                 | 7.3×4.4                               | 12.0±0.3  | 5.7±0.05  | 1.5±0.1   | 8.0±0.1             |                     |                     |                                   |                     | 2,500      |  |  |  |
| Н                  | 7.3×4.4                               | 12.0±0.3  | 5.7±0.1   | 1.510.1   |                     |                     |                     |                                   |                     | 1,500      |  |  |  |
| E                  | 7.3×5.8                               |           | 5.5±0.05  | 1.75±0.05 |                     |                     |                     |                                   |                     | 2,000      |  |  |  |

定格:267型Nシリーズ、TCA型 Type: 267 N Series, TCA


| ケース記号<br>Case Code | ケースサイズ<br>Case size | W<br>(mm) | F<br>(mm) | E<br>(mm) | P <sub>1</sub> | P <sub>2</sub> (mm) | P <sub>0</sub> (mm) | D <sub>0</sub>                     | 包装数/リ<br>Quantity/f | Iール(個)<br>Reel (pcs) |
|--------------------|---------------------|-----------|-----------|-----------|----------------|---------------------|---------------------|------------------------------------|---------------------|----------------------|
| Case Code          | Odde dize           | (111111)  | (111111)  | (111111)  | (mm)           | (111111)            | (111111)            | (mm)                               | φ 180               | φ330                 |
| Α                  | 3.2×1.6             | 8.0±0.3   | 3.5±0.05  | 1.75±0.1  | 4.0±0.1        | 2.0±0.05            | 4.0±0.1             | φ 1.5 <sup>+0.1</sup> <sub>0</sub> | 2,000               | 9,000                |
| В                  | 3.5×2.8             | 0.U±U.3   |           |           |                |                     |                     |                                    |                     | 8,000                |
| С                  | 6.0×3.2             | 12.0±0.3  | 5.5±0.05  | 1.5±0.1   | 8.0±0.1        |                     |                     |                                    | 500                 | 3,000                |
| D                  | 7.3×4.4             |           | 5.7±0.05  |           |                |                     |                     |                                    |                     | 2,500                |

#### 回路保護素子


#### Circuit Protection Components

定格:JAE型、JAG型、JAG型Nシリーズ、JAJ型、JAJ型Nシリーズ、JAK型、JAK型Nシリーズ、JHC型Nシリーズ KAB型、KAB型Nシリーズ、KAB型Mシリーズ、KAB型Tシリーズ、KVA型、KVA型Nシリーズ Type:JAE, JAG, JAG N Series, JAJ, JAJ N Series, JAK, JAK N Series, JHC, JHC N Series KAB, KAB N Series, KAB M Series, KAB T Series, KVA, KVA N Series

| IVAD, I            | NAD, NAD IN Selies, NAD IN Selies, NAD I Selies, NAA IN Selies |           |           |             |                     |                |                     |                                    |                     |                      |  |  |
|--------------------|----------------------------------------------------------------|-----------|-----------|-------------|---------------------|----------------|---------------------|------------------------------------|---------------------|----------------------|--|--|
| ケース記号<br>Case Code | ケースサイズ<br>Case size                                            | W<br>(mm) | F<br>(mm) | E<br>(mm)   | P <sub>1</sub> (mm) | P <sub>2</sub> | P <sub>0</sub> (mm) | D <sub>0</sub> (mm)                | 包装数/リ<br>Quantity/f | Iール(個)<br>Reel (pcs) |  |  |
| 0400 0040          | Case size                                                      | (111111)  | (111111)  | (111111)    | (111111)            | (11111)        | (111111)            | (111111)                           | $\phi$ 180          | $\phi$ 330           |  |  |
| 29                 | 1.6×0.8                                                        |           |           | 05 1.75±0.1 | 5±0.05 4.0±0.1      | 2.0±0.05       | 4.0±0.1             | φ 1.55±0.03                        | 5,000               | -                    |  |  |
| 31                 | 2.0×1.25                                                       | 8.0±0.3   | 3.5±0.05  |             |                     |                |                     | ψ 1.55±0.03                        |                     | -                    |  |  |
| 52                 | 3.2×1.6                                                        |           |           |             |                     |                |                     | φ1.5±0.1                           | 2,000               | -                    |  |  |
| 44E                | 7.3×5.8                                                        | 12±0.3    | 5.5±005   |             | 8.0±0.1             |                |                     | φ 1.5 <sup>+0.1</sup> <sub>0</sub> | 500                 | 1,500                |  |  |
| 59F                | 11.0×7.3                                                       | 24±0.3    | 11.5±005  |             | 12.0±0.1            |                |                     |                                    | -                   | 500                  |  |  |



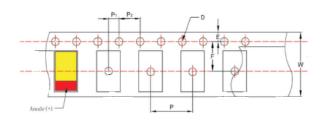
テーピング寸法/Tape dimensions



単位[mm]

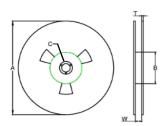
unit[mm]

チップタンタルコンデンサ テーピング形状記号


| Chip Lantalu          | m Capacitors | Tape code             |  |  |
|-----------------------|--------------|-----------------------|--|--|
| φ 180リール<br>φ 180Reel |              | 極性<br>Anode notation  |  |  |
| L                     |              | 送り穴側 +<br>Feed hole + |  |  |
| R                     | N            | 送り穴側 —<br>Feed hole — |  |  |

#### チップタンタルコンデンサ Chip Tantalum Capacitors

定格:TCD型 Type:TCD


| ケース記号<br>Case Code | ケースサイズ<br>Case size | W<br>(mm) | F<br>(mm) | E<br>(mm) | P<br>(mm) | P <sub>1</sub> (mm) | P <sub>2</sub> (mm) | φD<br>(mm) | 包装数/リール(個)<br>Quantity/Reel (pcs)<br><i>ф</i> 180 |
|--------------------|---------------------|-----------|-----------|-----------|-----------|---------------------|---------------------|------------|---------------------------------------------------|
| D                  | 7.3×4.3×2.8         | 12±0.30   | 5.5±0.05  | 1.75±0.10 | 4±0.10    | 8±0.10              | 2±0.10              | 1.55±0.20  | 500                                               |

#### テーピング寸法/Tape dimensions



単位[mm] unit[mm]

#### リール寸法/Reel dimensions



| リール<br>Reel | テープ幅<br>Tape width | Α        | В      | С         | W           | Т         |
|-------------|--------------------|----------|--------|-----------|-------------|-----------|
| φ 180       | 12                 | 178±2.00 | 50 min | 13.0±0.50 | 12.4+1.5/-0 | 1.50±0.50 |