No. P-279-008/1 DATE 2025-07

PRODUCTS DATA SHEET

ヒューズ付オープン機構

タンタル固体電解コンデンサ

279 型

RoHS 指令対応品 <完全鉛フリー>

NCC 松尾電機株式會社

279型

279型は内蔵しているヒューズにより、過電流が流れた場合ヒューズが溶断し発煙、発火を抑制するオープン機構を持つ完全鉛フリーのタンタル固体電解コンデンサです。

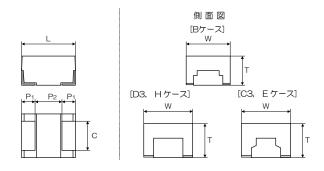
特長

- 1. 過電流の場合、ヒューズが溶断し発煙、発火を抑制するオープン機構品です。
- 2. パソコン、計測機器、半導体装置、ATM、携帯電話基地局等器への用途に最適です。
- 3. 低インピーダンス回路の電源フィルターや超高速論理回路のノイズバイパス等の用途に適しています。
- 4. はんだ耐熱性は260℃10秒を満たしリフロー、浸せきのいずれにも対応できます。
- 5. 3528サイズ~7343H、7257サイズまでの多種のラインナップがあります。
- 6. 完全鉛フリーのヒューズ内蔵型コンデンサです。

適用用途分類

当社の製品は幅広い用途で使用される事を想定し、市場・用途別を4つに分けた適用用途分類を設定しています。

- ご使用の際には各品種の適用用途分類をご確認下さい。
- 又、記載された用途以外でのご使用をご検討の場合は、必ず事前に弊社営業までご連絡下さい。


定格

項目	定格	備 考		
カテゴリー温度範囲(使用温度範囲)	-55~+125°C	85℃を超える場合は軽減電圧にて使用		
定格温度(定格電圧使用最高温度)	+85℃	(125℃において 2/3×定格電圧)		
定格電圧	6.3 ~ 50VDC			
公称静電容量	$0.15 \sim 330$ μ F	標準品一覧表による		
公称静電容量許容差	±10%、±20%			
故障率水準	1%/1000h	85℃、定格電圧印加 1000h、回路抵抗 0.5Ω/V		

形名の構成

<u>279</u> 品種名	<u>9</u>	<u>M</u> シリース	ζ	160 定格電					≣許容差 ─────	- R 形状記号 (テ・		<u>B</u> ケース記号 ピング仕様)		
電圧表記	定格電圧	容量表記	静電容量	容量表記	静電容量	容量表記	静電容量		許容差 記号	定格静電容量 許容差		形状記号	リール	極性
6301	6.3VDC	154	0.15 μF	225	2.2 µF	336	33 µF		K	±10%		R	φ180	送り穴側 -
1002	10VDC	224	0.22 µF	335	3.3 µF	476	47 μF		М	±20%		L	φ180	送り穴側 +
1602	16VDC	334	0.33 μF	475	4.7 μF	686	68 μF					Z	φ330	送り穴側 -
2002	20VDC	474	0.47 μF	685	6.8 µF	107	100 μF					Р	φ330	送り穴側 +
2502	25VDC	684	0.68 μF	106	10 μF	157	150 μF							·
3502	35VDC	105	1.0 µF	156	15 μF	227	220 μF							
5002	50VDC	155	1.5 µF	226	22 μF	337	330 µF							

外形寸法

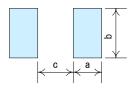
(mm)

ケース記号	ケースサイズ	L±0.2	W±0.2	T±0.2	P ₁ ±0.2	P ₂ min.	C±0.1
В	3528	3.5	2.8	1.9	0,8	1.5	2.2
C3	6032	6.0	3.2	2.5	1.3	3.0	2.2
D3	7343	7.3	4.4	2.8	1.3	4.0	2.4
Н	7343H	7.3	4.4	4.1	1.3	4.0	2.4
E	7257	7.3	5.8	3.5	1.3	4.0	3.5

表示

$[B,\!C_3,\!D_3,\!H,\!E\,\mathcal{T}\!-\!\mathcal{X}]$

注1) 定格電圧は、1英文字により表し、下表による。


定格電圧記号	g	j	А	С	D	Е	V	Н
定格電圧 VDC	4	6.3	10	16	20	25	35	50

$注^2$ 公称静電容量は 1 英文字と 1 数字により表し、下表による。

記 물	-	E5	J5	N5	S5	W5
公称静電容量 μF	-	0.15	0.22	0.33	0.47	0.68
記 물	A6	E6	J6	N6	S6	W6
公称静電容量 μF	1	1.5	2.2	3.3	4.7	6.8
記 号	Α7	E7	J7	N7	S7	W7
公称静電容量 μF	10	15	22	33	47	68
문 대	A8	E8	J8	N8		
公称静電容量 µF	100	150	220	330		

注 3)製造年月略号は、JIS C 5101-1 附属書 1 表 1 3 により表示する。

推奨取り付けランド

(mm)

		ő	a			
ケース記号	ケースサイス゛	70-	リフロー	b	С	
В	3528	3,2	2.0	2.4	1.8	
C3	6032	4.2	2.4	2.5	3.3	
D3	7343	5.2	2.4	2.7	4.6	
Н	7343H	5.2	2.4	2.7	4.6	
Е	7257	5.6	2.4	3.8	4.6	

はんだ付けの信頼性を向上させる一つとして、コンデンサの 自己位置修正効果(セルフアライメント)を大きく働かせる ことがあります。そのためには、ランド幅を端子形状幅に、 又ランド間隔も端子間隔に近い寸法にすることが有効です。

定格電圧・静電容量別ケース記号

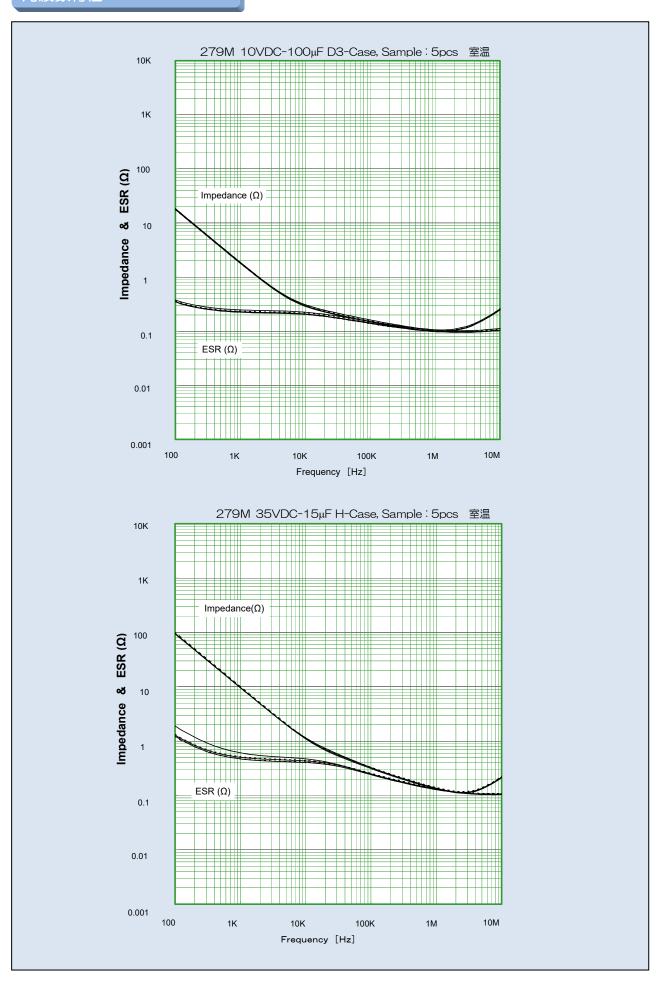
2022. 5 現在

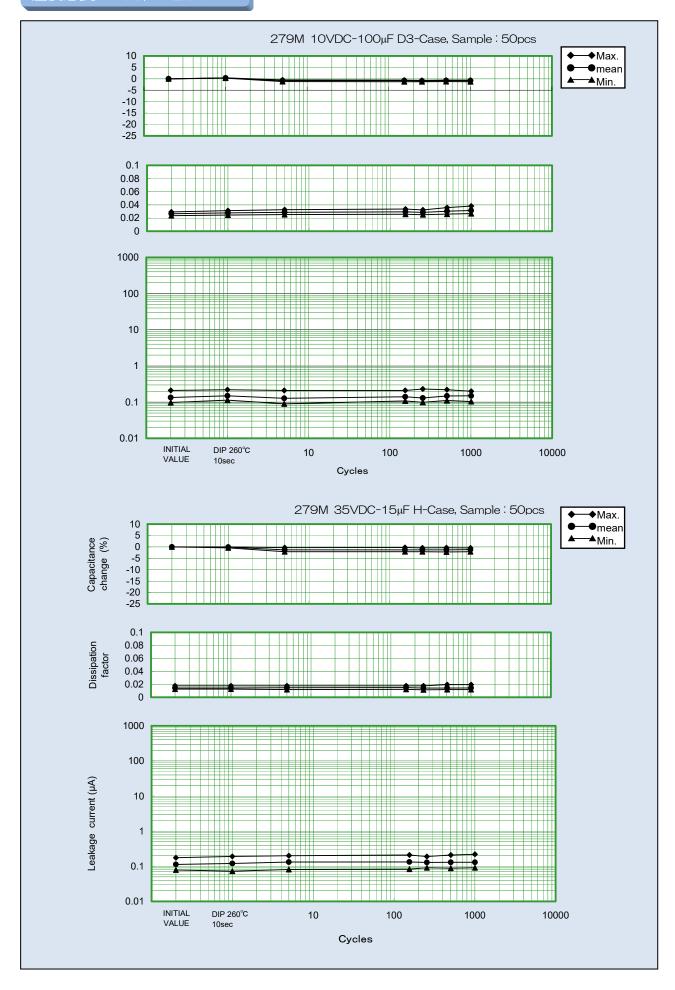
R.V.(VDC)	6.3	10	16	20	25	35	50
0.15							В
0.22							В
0.33							В
0.47						В	B, C3
0.68					В	В	С3
1.0					В	B, C3	C3
1.5				В	В	C3	C3, D3
2.2			В	В	C3	C3	D3
3.3		В	В	В	C3	C3, D3	D3
4.7	В	В	В	C3	C3	D3	Н
6.8	В	В	C3	C3	C3, D3	D3, E	
10	В	B, C3	B, C3	C3, D3	C3, D3	H, E	
15	C3	B, C3, D3	B, C3, D3	C3, D3	C3, D3, E	H, E	
22	B, C3	C3, D3	C3, D3	D3, E	D3, H, E		
33	C3	C3. D3	D3, E	H, E			
47	C3, D3	C3, D3, E	D3, H, E	Н			
68	C3, D3	D3, H, E	Е				
100	D3, H, E	D3, E	Н				
150	D3	D3, H					
220	D3, H	Н					
330	Н						

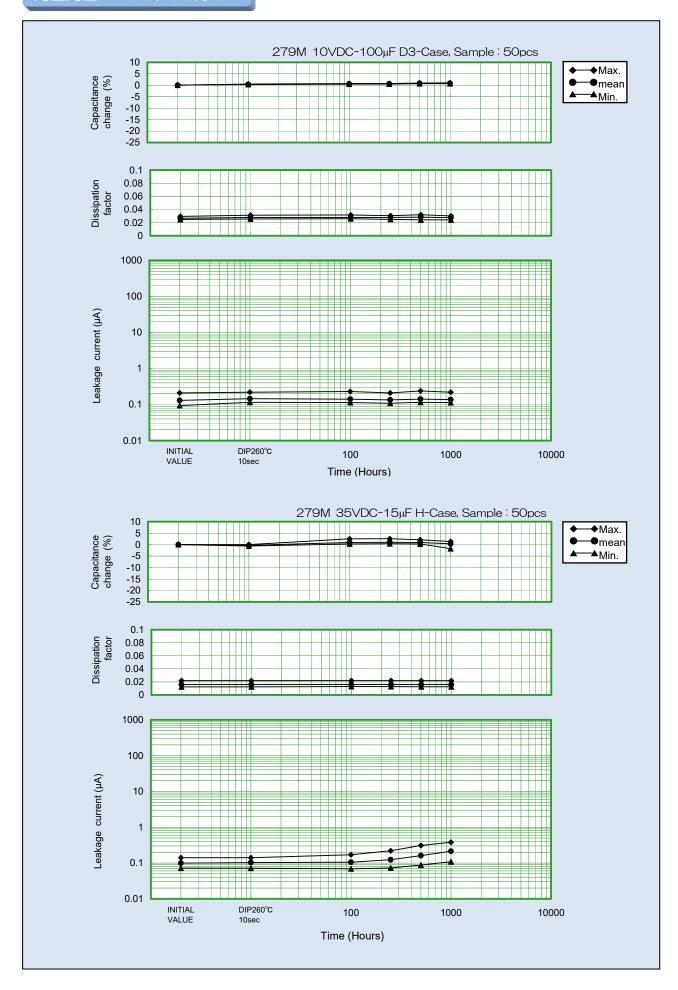
2022. 5 現在

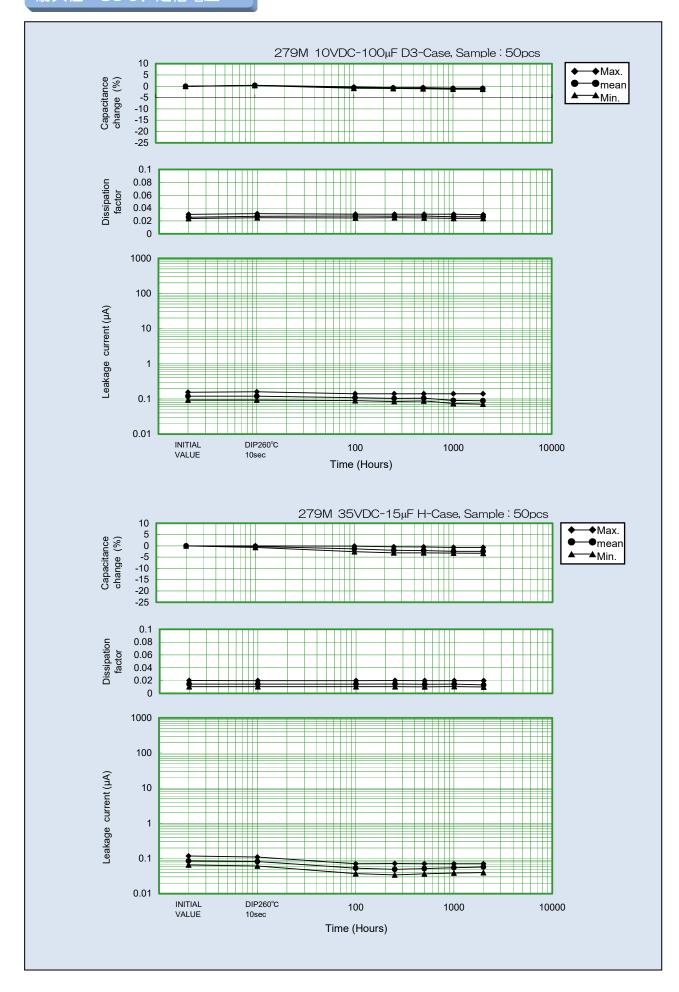
形 名(1) 今(6)	Ω 10kHz 3.0 ↓ 1.2 3.0 1.2 ↓ ↓ 1.0 1.2 1.0 ↓ ↓ 0.7 1.0 ↓ ↓ 3.0 ↓ ↓ ↓ 1.2
279M 6301 475_1_2B _ 3	3.0 1.2 3.0 1.2 1.0 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0
279M 6301 685 1 2 B 3	1.2 3.0 1.2 1.0 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
279M 6301 106_1_2B _ 3	1.2 3.0 1.2 ↓ ↓ 1.0 1.2 1.0 ↓ ↓ 0.7 1.0 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
279M 6301 156_1_2 C3 _3	1.2 3.0 1.2 ↓ 1.0 1.2 1.0 ↓ 0.7 1.0 ↓ ↓ 3.0 ↓ ↓ 1.2
279M 6301 136 C.S	3.0 1.2 ↓ 1.0 1.2 1.0 ↓ 0.7 1.0 ↓ ↓ 3.0 ↓ ↓ 1.2
279M 6301 226 _1 _2 C3 _3	1.2 ↓ 1.0 1.2 1.0 ↓ 0.7 1.0 ↓ ↓ ↓ 3.0 ↓ ↓ ↓
279M 6301 336 1 2 C3 3	1.0 1.2 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.2
279M 6301 476 _ 1 _ 2 C3 _ 3	1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0 1.2 1.0 ↓ 0.7 1.0 ↓ ↓ 3.0 ↓ ↓
279M 6301 686_1_2 C3 _3	1.2 1.0 ↓ ↓ 0.7 1.0 ↓ ↓ 3.0 ↓ ↓
279M 6301 686 _ 1 _ 2 D3 _ 3	1.0 ↓ 0.7 1.0 ↓ ↓ 3.0 ↓ ↓ ↓
279M 6301 107 _1 _2 D3 _3	↓ 0.7 1.0 ↓ ↓ ↓ 3.0 ↓ ↓ ↓ ↓
279M 6301 107 _1 _2 H3	↓ 0.7 1.0 ↓ ↓ ↓ 3.0 ↓ ↓ ↓ 1.2
279M 6301 107 _1 _2 E3	1.0 ↓ ↓ 3.0 ↓ ↓ 1.2
279M 6301 157 _1 _2 D3 _3	3.0 ↓ ↓ 1.2
279M 6301 227 _1 _2 D3 _3	↓ ↓ ↓ 1.2
279M 6301 227 _1 _2 H3	↓ ↓ ↓ 1.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	↓ ↓ ↓ 1.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	↓ ↓ ↓ 1.2
279M 1002 475 _ 1 _ 2 B _ 3	↓ ↓ 1.2
279M 1002 683 _ B	1.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2
279M 1002 106_1_2B _3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
279M 1002 156_1_2 D3 _3	3,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2
2/9 1002 226 _	1.0
	1.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.0
\parallel 279M 1002 336 $_{-}^{1}$ $_{-}^{2}$ C3 $_{-}^{3}$ \parallel \downarrow \parallel \downarrow \parallel \downarrow \parallel \downarrow \parallel 0.08	1.2
$279M\ 1002\ 336\ _{-}^{1}\ _{-}^{2}\ D3$ $\ _{-}^{3}$ $\ \downarrow$ 0.06	1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2
$279M\ 1002\ 476\ _{-}^{1}\ _{-}^{2}\ D3\ _{-}^{3}\ \downarrow\ \downarrow\ \downarrow\ 47\ D3\ 4.7\ 47\ 59\ \downarrow\ \downarrow\ \downarrow\ \downarrow\ \downarrow$	1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7
$279M\ 1002\ 686\ _{-1}^{-1}\ _{2}\ D3\ _{-3}^{-3}\ \downarrow\ \downarrow\ \downarrow\ \downarrow\ 68\ D3\ 6.8\ 68\ 85\ \downarrow\ \downarrow\ \downarrow\ \downarrow\ \downarrow\ \downarrow$	1.0
279M 1002 686 _ 1 _ 2 H 3 ↓ ↓ ↓ 68 H 6.8 68 85 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	↓ ○ 7
2/9/V/1002 080	0.7
279M 1002 107 _1 _2 D3 _3	1.0 0.7
2/9W 1002107E	1.0
1 =	1.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1
279M 1602 227 _ H _ V V 226 H 22 226 276 V 6.16 6.16 6.12 279M 1602 225 _ 1 _ 2 B _ 3 16 20 13 2.2 B _ 0.5 5 6.3 0.08 0.06 0.06 0.06	3.0
279M 1602 223 _ B	↓
279M 1602 333 _ B	į į
270M 4 CO COE 1 2 CO 3 68 C3 11 11 14	1.2
279M 1602 685 C3	3.0
279M 1602 106_1_2 C3 _3	1.2
279M 1602 156_1_2 B _3 ↓ ↓ ↓ 15 B 2.4 24 30 0.12 0.08 0.08 0.10	3.0
270M 1602 156 1 2 C3 3 1 1 1 1 15 C3 24 24 30 008 006 006 008	1.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0
279M 1602 226 $_{-1}^{-1}$ C3 $_{-3}^{-3}$ \downarrow \downarrow \downarrow 22 C3 3.5 35 44 \downarrow \downarrow 0.08	1.2
279M 1602 226 _ 1 _ 2 D3 _ 3 ↓ ↓ ↓ ↓ 22 D3 3.5 35 44 ↓ ↓ ↓ 0.06	1.0
279M 1602 236 1 2 D3 3 1 1 1 1 33 D3 53 53 66 1 1 1 1 008	↓
279M 1602 336 _ 1 _ 2 E _ 3 ↓ ↓ ↓ ↓ 33 E 5.3 53 66 ↓ ↓ ↓ ↓ 0.06	0.7
279M 1602 476 _ 1 _ 2 D3 _ 3 ↓ ↓ ↓ ↓ 47 D3 7.5 75 94 ↓ ↓ ↓ ↓ 0.08	1.0
279M 1602 476 _¹ _² H _³ ↓ ↓ ↓ 47 H 7.5 75 94 ↓ ↓ ↓ ↓	\downarrow
l 279M 1602 476 ^{1 2} F	0.7
279M 1602 686 ¹ ² E ³ ↓ ↓ ↓ 68 E 11 109 136 0.10 0.08 0.08 0.08	\downarrow
279M 1602 686 E	1.0

T. (1) (2) (3)	定格		電圧	静電	ケース	漏	れ電流	μА	損失角の正接				ESR
形 名(1)(2)(3)	電圧 VDC	V[85℃	125℃	容量	문댦	20°C	85℃	125℃	-55℃	20°C	85°C	125℃	Ω 10kHz
279M 2002 155 _ ¹ _ ² B _ ³	20	26	16	1.5	В	0.5	5	6.3	0.08	0.06	0.06	0.06	3.0
279M 2002 225 _1 _2 B _3		↓	↓	2.2	В	0.5	5	6.3	↓	↓	↓	↓	↓ ↓
279M 2002 335 _1 _2 B _3	↓	j	ļ	3.3	В	0.7	7	8.3	1	j	i	0.08	, ,
279M 2002 335 B 3	ļ	j	↓ ↓	4.7	C3	0.9	9	12	i	i	į	0.06	1.2
279M 2002 475 C3 3	Ţ	Ţ	↓ ↓	6.8	C3	1.4	14	17	Ţ	ı ,	į.	↓	↓ ↓
279M 2002 106 _1 _2 C3 _3	Ţ	Ţ	↓ ↓	10	C3	2.0	20	25	Ţ	ı ,	↓	0.08	Ĭ
279M 2002 106 _ 1 _ 2 D3 _ 3	ľ	ľ	1	10	D3	2.0	20	25	ľ	ľ	Ţ	0.06	1.0
279M 2002 106 D3 279M 2002 156 _ 1 _ 2 C3 3	Ţ	Ţ	↓ ↓	15	C3	3.0	30	38	Ţ	ı ,	Ţ	0.08	1.2
279M 2002 156 _ 1 _ 2 D3 _ 3	Ţ	Ţ	↓ ↓	15	D3	3.0	30	38	Ţ	ı ,	į.	1	1.5
279M 2002 136 D3 _ 3	1	1	1	22	D3	4.4	44	55	1	1	Ţ	1	1.0
279M 2002 226 _ 1 _ 2 E _ 3	ľ	ľ	↓	22	E	4.4	44	55	i	ľ	Ĭ	0.06	0.7
219IVI 2002 220 E	\ \ \	*	1	33	Н	6.6	66	83	1	\ \ \ \ \	1	0.00	1.0
2191V12002330	\ 	1	1	33	E	6.6	66	83	1	\ \ \ \ \	*	¥ 	↓
279M 2002 336 _1 _2 E3	\ \ \	1	1	47	Н	9.4	94	117	1	\ \ \ \ \	1	1	1
219W 2002 410	25	32	20	0.68	В	0.5	5	6.3	0.05	0.04	0.04	0.05	3.0
2131V1 2302 004 D _	≥5	J∠ ↓	↓ ↓	1.0	В	0.5	5	6.3	0.05	0.04	0.04	0.05	3.0
219W 2002 TOO B _	↓	↓ ↓	↓	1.5	В	0.5	5	6.3	0.08	0.06	0.06	0.06	1
2/9N/2002 100 _ B _	¥ 	↓ ↓	↓	2.2	C3	0.5	6	6.9	0.08	0.08	0.08	0.00	↓ 1.2
219101 2002 220 C0 _	↓		↓ ↓	3.3	C3	0.8	8	10	1	*	*	\ 	I.C
219N12002335 C3 _	¥ 1	*	↓ ↓	3.3 4.7	C3	1.2	o 12	15	1	*	, v	↓	I
219N12002410 C3 _	↓	↓	↓ ↓			1.2			1	•	↓	↓	↓
219101 2002 000 C3 _	↓	↓	↓ ↓	6.8 6.8	C3 D3	1.7	17 17	21 21	1		↓	↓	↓ 1.0
2791V1 2502 685 D3 _	↓	↓							1		*	↓ 0.00	
2791V12002 100 C3 _	↓	↓	↓	10	C3	2.5	25	31	1	↓	+	0.08	1.2
219W 2002 100 D3 _	↓	↓	↓	10	D3	2.5	25	31	V 10	, v	V	↓ ○ 1 ○	1.5
2/910/2002 100 03 _	↓	↓	1	15	C3	3.8	38	47	0.10	0.08	0.08	0.10	1.4
219N12302 130 _ D3 _	↓	. ↓	1	15	D3	3.8	38	47	↓ ↓	↓	↓ 0.00	↓	↓ ○ 7
279M 2502 156 _1 _2 E _3	↓	↓	1	15	E	3.8	38	47	0.08	0.06	0.06	0.06	0.7
219W 2002 220 D3 _	↓	↓	1	22	D3	5.5	55	69	. ↓	↓	→	+	1.0
2/91V1 2502 226 H _	↓	↓	↓	22	Н	5.5	55	69	1	↓	→	+	1
2791V1 2302 226 E	√ 35	↓ 44	28	22 0.47	E B	5.5	55 5	69	→ 	0.04	0.04	↓ 0.00	↓ 20
2191013302414 D _	J J	44 ↓				0.5	5	6.3	0.06 0.05	0.04	0.04	0.06 0.05	3.0
2191013302004 D _		↓ ↓	↓ ↓	0.68	B B	0.5 0.5	5	6.3	0.05	0.04	0.04	0.05	
279M 3502 105 _1 _2 B _3	↓	↓		1.0	C3	0.5	5	6.3	. ↓	1	↓	↓	1
279M 3502 105 _1 _2 C3 _3	↓	↓	1	1.0	C3	0.5	5	6.3	↓ 0.08	0.06	0.06	0.06	10
279M 3502 155 _1 _2 C3 _3	↓		↓	1.5			8	6.6	0.08	0.08	0.08	0.00	1.2
219N 3302 223 C3 _	↓	↓	1	2.2	C3	0.8		9.6	. ↓	↓	·	V	1
279M 3502 335 _1 _2 C3 _3	↓	↓	↓	3.3	C3	1.2	12	14	1		↓	*	•
279M 3502 335 _ ¹ _ ² D3 _ ³	↓	↓	↓	3.3	D3	1.2	12	14	1		↓	↓	1.0
2191VI 3302 473 D3 _	↓	↓	↓	4.7	D3	1.6	16	21	1		↓	0.00	↓
2191013302005 D3 _	 	↓	↓	6.8	D3	2.4	24	30	1	†	1	0.08	1.5
2191013302005 E	↓	↓	↓	6.8	E	2.4	24	30	1	†	→	0.06	0.7
219N13302 100 H _	 	↓	↓	10	Н	3.5	35	44	↓	†	→	↓	1.0
219W 3302 100 L	↓	↓	↓	10	E	3.5	35	44	↓		→	↓	0.7
2191013302 130 11 _	. ↓	↓	↓	15	Н	5.3	55 55	66 66	 		+	↓	1.0
279W 3002 100 E	↓	→ 	↓	15	E	5.3	55	66	→ 	001	↓ ○ C 4	↓ 005	↓ .
219W 3002 134 B _	50	63	40	0.15	Вс	0.5	יט ה	6.3	0.05	0.04	0.04	0.05	5.0
2191010002224 D _	↓	↓	↓	0.22	В	0.5	5	6.3	↓	↓	→	→	↓ 20
219101 0002 004 B	↓	↓	↓	0.33	В	0.5	5	6.3	↓ 0.00	↓ ○ ○ 4	↓ ○ ○ 1	↓ 0.00	3.0
213W 3002 414 D _	↓	↓	1	0.47	В	0.5	5	6.3	0.06	0.04	0.04	0.06	1
2191010002414 03 _	↓	↓	↓	0.47	C3	0.5	5	6.3	0.05	↓	→	0.05	↓
279M 5002 684 _1 _2 C3 _3	. ↓		↓	0.68	C3	0.5	5	6.3	↓	. ↓	→	↓	1
2191010002100 00 _	. ↓	↓	↓	1.0	C3	0.5	5	6.3	↓ 	↓ ↓	↓	↓	. ↓
279M 5002 155 _1 _2 C3 _3	↓	↓	↓	1.5	C3	0.8	8	9.4	0.08	0.06	0.06	0.08	1.2
279M 5002 155 _1 _2 D3 _3	↓ ↓	↓	↓	1.5	D3	0.8	8	9.4	1	1	↓	0.06	1.5
1 0 0	1	↓	↓	2.2	D3	1.1	11	14	1	1	1	↓	↓
2191010002220 D0 _	•												
279M 5002 225 _ ' _ 2 D3 _ 3 279M 5002 335 _ 1 _ 2 D3 _ 3 279M 5002 475 _ 1 _ 2 H _ 3	↓ ↓	↓	1	3.3 4.7	D3 H	1.7 2.4	17	21 29	1	↓	1	0.08	1.0

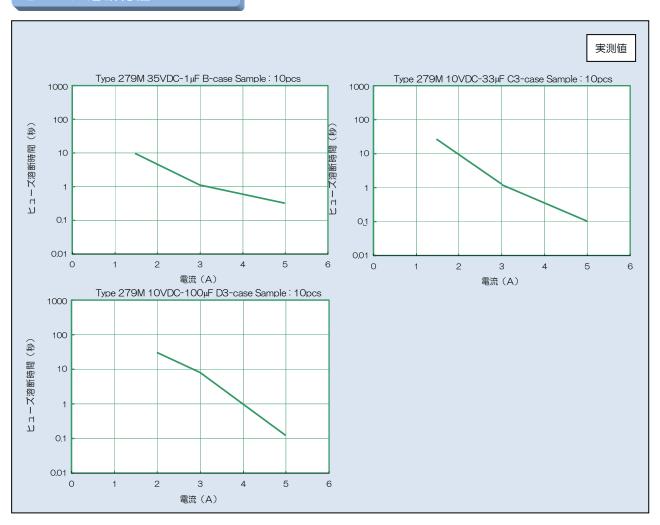

注 (1) _1 は,容量許容差 K 又は M が入ります。


 $^{^{(2)}}$ $_{-}^{2}$ は,テーピング仕様のみ形状記号 L,P 又は R,N が入ります。


 $^(^3)$ _ 3 は,層別のための記号が入ります。 例:"7"は、ハロゲンフリー対応品を示します。


性 能

No		項目		性能	試験方法
1	漏れ電流(μA)			0.01CV又は0.5のいずれか大きな値以下	JIS C 5101-1 4.9項 印加電圧: 定格電圧 印加時間: 5分間 測定温度: 常温
2	静電容量			規定の許容差以内	JIS C 5101-1 4.7項 測定周波数: 120Hz±20% 測定電圧: 0.5Vrms+1.5~2VDC 測定温度: 常温
3	3 損失角の正接		の正接 標準品一覧表に示す値以下		JIS C 5101-1 4.8項 測定周波数: 120Hz±20% 測定電圧: 0.5Vrms+1.5~2VDC 測定温度: 常温
4	等価直列抵抗			標準品一覧表に示す値以下	測定周波数:10kHz 測定温度:常温
	高温及び低温特性 (温度による		漏れ電流	 No1に示す値以下	JIS C 5101-1 4.29項 測定温度: 20±2℃
	特性の変化)	段階	静電容量 損失角の正接	規定の許容差以内 標準品一覧表に示す値以下	ngelmig · 20-20
	2 率		-	段階1の値の O/-10%以内 標準品一覧表に示す値以下	測定温度: -55±3°C
5		段階 3	漏れ電流 静電容量変化 率	No1に示す値以下 段階1の値の±2%以内 標準品一覧表に示す値以下	測定温度:20±2℃
5		段階 4	漏れ電流 静電容量変化 率	0.1CVまたは5のいすれか大きな値以下 段階1の値の +10/0%以内 標準品一覧表一覧表に示す値以下	測定温度:85±2℃
	段階 お お お お に お に に お に に の に の に の に の に の に の の の の の の の の の の の の の			0.125CVまたは6.3のいすれか大きな値以下 段階1の値の +15/0%以内 標準品一覧表に示す値以下	測定温度: 125±2℃ 測定電圧: 125℃軽減電圧
	発 段階 6 露容量変化			No1に示す値以下 段階1の値の±2%以内 標準品一覧表に示す値以下	測定温度:20±2℃
			漏れ電流 静電容量変化	No1に示す値以下 試験前の値の±10%以内	JIS C 5101-1 4.26項 試験温度: 試料の半数は85±2℃、残りの半数は125±
6	6 サージ 率 損失角の正接 外 観			試験前の値のエイクを以内 標準品一覧表に示す値以下 外観に損傷がないこと	2°C 直列保護抵抗:1000Ω 放電抵抗 : 1000Ω
7	1,, -7,			外観に損傷がないこと	JIS C 5101-1 4.34項 JIS C 5101-1 4.33項により実装したものを試料とする 加圧力: 5N 保持時間: 5±1秒間
8	耐プリント板曲げ性 静電容量 外 観			測定中、測定値が安定していること 外観に損傷がないこと	JIS C 5101-1 4.35項 た わ み: 3mm
9	振動静電容量外額		静電容量	測定中、測定値が安定していること 外観に損傷がないこと	JIS C 5101-1 4.17項 周波数範囲: 10~55Hz 全振幅: 1.5mm 振動方向 : 互いに直角な3方向 振動時間 : 1方向2時間 計6時間 取 付 け: ブリント基板に端子をはんだ付けする。
10) 衝撃			0.5ms以上の断続的接続又はショートあるいはオープンなどないことまた火花放電、絶縁破壊あるいは機械的損傷がないこと	
11	はんだ付け性			端子にはんだが良好に付着(ピンホール、ぬれ不良及びはんだはじきがない)していること	JIS C 5101-1 4.15項
12	漏れ電流 静電容量変化 はんだ耐熱性 率 損失角の正接 外 観		静電容量変化 率 損失角の正接	No1に示す値以下 試験前の値の±5%以内 標準品一覧表に示す値以下 外観に損傷がないこと	以S C 5101-1 4.14項 次のいずれかによる (a)完全浸せき法 はんだ温度: 260±5℃ 浸せき時間: 10±1秒 (b)端子部浸せき法 はんだ温度: 260±5℃ 時間: 10±1秒
13	部品の耐溶剤性	瀬れ電流 静電容量変化 率 損失角の正接		試験前の値の±5%以内	JIS C 5101-1 4.31項 試験温度 : 23±5℃ 浸せき時間: 5±0.5分間 試験の種類: JIS C 0052の方法2による 試薬の種類: 2-プロパノール(イソプロピルアルコール)
14	表示の耐溶剤性 外観		示の耐溶剤性 外観 表示が明瞭であること		JIS C 5101-1 4.32項 試験温度 : 23±5℃ 浸せき時間: 5±0.5分間 試験の種類: JIS C 0052の方法1による 試薬の種類: 2-プロパノール(イソプロピルアルコール) ラビング材料: 綿毛
15	漏れ電流 静電容量変化 率 損失角の正接 外観		静電容量変化 率 損失角の正接 外観	No1に示す値以下 試験前の値の±10%以内 標準品一覧表に示す値以下 外観に損傷がないこと	JIS C 5101-1 4.16項 段階1: -55 0/-3℃、30±3分間 段階2: 25 +10/-5℃、30計以下 段階3: 125 +3/0℃、30±3分間 段階4: 25 +10/-5℃、3分間以下 段階1~4を1サイクルとして5サイクル実施する
16	高温高湿		漏れ電流 静電容量変化 率 損失角の正接	No1に示す値以下 試験前の値の±10%以内 標準品一覧表に示す値以下 外観に損傷がないこと	JIS C 5101-1 4.21項 温 度: 40±2℃ 湿 度: 90~95%R,H, 試験時間: 500 +24/0h
17	耐久性		漏れ電流 静電容量変化 率 損失角の正接 外観	No1に示す値の125%以下 試験前の値の±10%以内 標準品一覧表に示す値以下 外観に損傷がないこと	US C 5101-1 4.23項 試験温度、印加電圧:85±2℃、定格電圧 又は 125±3℃、2/3×定格電圧 試験時間 :2000+72/0h 電源インピーダンス:3Ω以下
18	ヒューズ溶断特	性	溶断時間 表面温度	ヒューズ溶断特性(実測値)グラフをご覧ください。	
19	突入電流試験		以田州汉	ヒューズが溶断しないこと	日加電圧:定格電圧 季海交易・20人以上の季淬焼を印加
٠٠					電源容量:20A以上の電流値を印加



ヒューズ溶断特性

使用上の注意事項(チップ形タンタル固体電解コンデンサ)

____ 1. 使用電圧について

タンタル固体電解コンデンサは定格電圧以下でご使用ください。

- ・定格電圧: 定格電圧とは、定格温度でコンデンサの端子間に連続して印加することができる直流電圧の最大値をいいます。
- ・サージ電圧:サージ電圧とは、定格温度または最高使用温度でコンデンサに瞬間的に印加できる電圧で、6分の周期で1000Ωの直列抵抗を通して30秒間印加する サイクルを1000回繰り返したとき、耐えることのできる電圧をいいます。

回路設計に際しては、機器の要求信頼度を考慮して適切な電圧軽減をしてください。

2. 交流成分を含む回路に使用する場合

以下の3項目について特にご注意願います。

- (1) 直流電圧および交流電圧せん頭値の和が定格電圧を超えないこと。
- (2)交流の半サイクルで許容値を超えた逆電圧がかからないこと。(3項参照)
- (3)リプル電流は許容値を超えないこと。

3. 逆電圧について

タンタル固体電解コンテンサは有極性ですので逆電圧を印加しないで下さい。なお、コンデンサの両端をテスター等でチェックされる場合はテスターの電位(極性)を 事前に確認して下さい。

4. 許容リプル電流

100kHz付近あるいはそれ以上でご使用になる場合の許容リブル電流および電圧は、各ケース記号毎の表1の許容電力損失値(Pmax値)とESR規格値から、以下の 式で求めることができます。ただし、予想動作温度が室温以上の場合は、Pmax値に所定の乗数 (表2) をかけて許容値を計算して下さい。また、異なる周波数の場合は 弊社営業担当へお問い合わせください。

$$P=I^2 imes ESR$$
 または $P=rac{E^2 imes ESR}{Z^2}$ より、
許容リブル電流 $Imax=\sqrt{rac{Pmax}{ESR}}$ $(Arms)$
許容リブル電圧 $Emax=\sqrt{rac{Pmax}{ESR}} imes Z$ $=Imax imes Z$ $(Vrms)$

ここで、

lmax 規定周波数での許容リプル電流(Arms:実効値) Emax 規定周波数での許容リプル電圧(Vrms:実効値)

Pmax 許容雷力損失(W)

ESR 規定周波数でのESR規格値(Ω) 7 規定周波数でのインピーダンス(Ω)

表1 ケース記号毎の許容電力損失

ケース記号	Pmax (W)
А	0.045
В	0.050
C ₃	0.065
D_3	0.085
Н	0.100
E	0.105

注 この値はO.8tのガラスエポキシ基板に実装した状態で大気中にて計測した 実験値であり、基板の種類、実装密度、空気の対流状態等により変わる場合 がありますので、計算された電力損失値が本表のPmaxと異なる場合には 弊社営業担当へお問い合わせください。

表2 各動作温度でのPmaxの乗数

動作温度(℃)	乗数
25	1.0
55	0.9
85	0.8
125	0.4

5. 低インピーダンス回路での使用について

インピーダンス回路にタンタルコンテンサをご使用の際は、低インピーダンスによる故障率増大を防ぐための使用電圧がコンテンサの定格電圧の1/2以下(1/3以下推 奨) になるような定格を選定ください。

6. バイポーラ接続でのご使用について

バイポーラ接続での使用はできません。

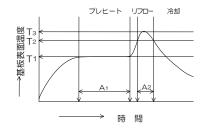
7. はんだ付け 7.1.プレヒート

コンデンサの信頼性を向上させるには、はんだ付け時に加わる熱衝撃をゆるやかにするのが有利です。130℃~200℃(60~120秒)のプレヒートを必ず行ってください。 7.2.はんだ付け

コンデンサ本体温度が260℃を超えない条件のもとで、はんだ付けを行ってください。

(1) リフロー

- 基板面にクリームはんだを印刷塗布し、コンデンサを装着して加熱する方法で、加熱方法により直接加熱と雰囲気加熱に区分されます。
- 直接加熱(ホットプレート)
- 基板を直接熱板に載せる方法です。コンデンサは一般的に常温の大気中にさらされており、熱板または基板温度より低くなります。
- a) VPS (ベーパーフェーズソルダーリング)


高沸点不活性液体の蒸気により加熱する方法で、コンデンサ本体と基板はほぼ同一温度で上昇し、雰囲気温度に達します。温度は240°C以下にセットしてください。

b) 近赤外、遠赤外線加熱

条件によってはコンデンサ本体が熱吸収のため内部温度は設定温度より20~30℃高くなり、260℃を超えることもあります。コンデンサ本体の内部温度が 260℃を超えないよう炉の温度設定は必ず低めにするか、空気あるいは窒素循環((c)項参照)を併用してください。

c) 循環式加熱炉

主な加熱源は赤外線ですが、加熱された空気、窒素あるいは不活性ガスを循環することにより、基板と製品がほぼ同じ温度に加熱できる方法です。

温度	時間
T1=130°C~200°C	A1:60~120秒
T2=220°C~230°C	A2:60秒以下
T3=~260°C	10秒以下

回数:2回Max

(2) はんだごて

温度および時間制御が困難であり、はんだごてによる取付け修正は推奨出来ません。やむを得す行う場合は、コンデンサ本体の端子部にはんだごてをあてないよう にして、350℃以下、5秒以内の条件ですみやかにはんだ付けを行ってください。

(3) その他各種の方法がありますので、ご使用にあたっては当社営業にご相談ください。

8. 溶剤洗浄

有機溶剤を用いた洗浄では、その洗浄効果だけを追及することは、コンデンサの外観、機能を損ねる場合があります。当社のコンデンサは2-プロバノールに、20~30℃にて5分間浸せきされても影響はありませんが、新しい洗浄方式の導入又は、洗浄条件の変更等に際しましては当社営業にご相談ください。

9. 樹脂モールド

基板組立後、樹脂注型などでモールドされますと、樹脂硬化にともなう発熱および硬化応力、さらにはその後の温度変化によって生じる内部応力により故障の原因となる ことがありますので、樹脂およびバッファーコートの選定は十分事前テストの後行ってください。

10. 振動、落下衝擊

コンデンサを高さ1mのところからコンクリートの床に落下させますと約300Gの過大な衝撃力が加わります。落下させた製品の全てが故障する性質のものではありませんが、故障の原因となり、機器の信頼性を低下させる確率が高くなります。

11. 超音波洗浄

過酷な超音波条件で洗浄を行うと端子が切断されることがあります。また電気的特性面からも好ましくありませんので、出来る限り使用しないでください。もし使用される 場合は以下の配慮をお願いします。

- (1)溶剤を沸騰状態にしないでください。(超音波出力を下げるか、沸点の高い溶剤を使用してください)
- (2) 超音波出力0.5W/cm²以下にしてください。
- (3) 洗浄時間は極力短くし、かつ試料は揺動させてください。
- なお、ご使用に際しては当社営業にご相談ください。

12. その他注意事項

- ・コンテンサを2個以上直列接続する場合、個々のコンテンサに電圧が均等に分圧できる抵抗器を並列に接続してください。
- ・実装スペースの制約などによるコンデンサの外装材の切削加工は行なわないでください。
- セットのエージングの条件は、コンデンサの定格以下で実施してください。
- ・セット稼働中にコンデンサに直接触れないでください。
- コンデンサを分解しないでください。
- ・コンデンサの両端子をテスター等でチェックする場合は、テスターの電位(極性)を事前に確認してください。通電中に電極を当ててチェックする場合には、他の部品 等の端子に触れないようにしてください。
- ・セットの使用中、発火、発煙及び異臭が生じた場合、セットの電源を切るか又は電源コードをコンセントからぬいてください。燃焼した場合は顔や手を近づけないで ください。
- ・コンデンサがショートをすると高温になり、コンデンサ素子のタンタルが発火する場合があります。この際プリント配線板等を焼損するおそれがあります。
- ・コンデンサは直射日光や埃にさらさないよう梱包した状態で常温常湿で保管してください。取り決めた保管期間を経過したコンデンサは、協議の上処置してください。
- 通電されない状態でのご使用機器は、常温・常湿で保管してください。高湿度の雰囲気で使用される場合は、防湿処理を行ってください。また、コンデンサ周囲に結露するような使用は避けてください。活性なガス中での使用はコーティング等で、直接ガスがコンデンサに触れないようにしてください。酸やアルカリの雰囲気での使用は避けてください。
- ・コンデンサは各種の金属および樹脂より構成されていますので廃棄にあたっては産業廃棄物として処置してください。
- ・サンプルとしてお求めになったコンデンサは、市販機器に使用しないでください。サンプルは、特定用途(形状見本、電気特性確認用等)に提供しております。
- ・製品を梱包しているプラスチックリール (PS製) は、室温環境 (5~35℃) での使用を前提としています。リールの変形等による自動挿入時の不具合を避けるため、 リールを直射日光や熱源から演ざけ、輸送中を含め高温状態 (60℃以上) にならないようご注意ください。

この使用上の注意事項は、電子情報技術産業協会(JEITA)発行の「電子機器用固定タンタル固体電解コンテンサの使用上の注意事項」(RCR-2368)を参考に作成いたしました。注意事項の詳細(解説・理由・具体例等)につきましては上記を参照されるか、当社営業担当へお問い合わせください。

NCC 松尾電機株式會社

製品に関するご相談は下記へお問い合わせください。

東日本営業:〒105-0004 東京都港区新橋5丁目1番9号 銀泉新橋第2ビル 6階 TEL(03)5473-3001

中部日本営業 : 〒446-0074 愛知県安城市井杭山町一本木5番10号(碧海ビル3F) TEL(0566)77-3211 FAX(0566)77-1870 西日本営業 : 〒561-8558 大阪府豊中市千成町3丁目5番3号 TEL(06)6332-0883 FAX(06)6332-0920 海外営業 : 〒561-8558 大阪府豊中市千成町3丁目5番3号 TEL(06)6332-0883 FAX(06)6332-0920

ホームページURL : https://www.ncc-matsuo.co.jp

当カタログの掲載内容は、予告なく変更することがありますので、ご使用に当たっては、弊社営業担当へお問合せの上、仕様のご確認をお願いします。

市場	適用 用途		用途	推奨品種	推奨品種	推奨品種	推奨品種
10770	分類 概要 代表的なアプリケーション例		チップタンタルコンデンサ	リード付タンタルコンデンサ	回路保護素子	フィルムコンデンサ	
高信頼度 機器	1	高度な安全性や信頼性が要求される機器 製品の保守交換が不可能な機器、製品の故障が人命に 直接かかわる。または、致命的なシステムダウンを引 き起こす可能性がある機器	・宇宙開発機器関連(衛星、ロケット、人工衛星)・航空・防衛システム・原子カ・火力・水力発電システム	267型Pシリーズ	111型Pシリーズ	該当なし	該当なし
車載 • 産業機器	2	信頼性が重視される機器 ・製品の保守交換が極めて困難な機器や、製品の故障が 人命に影響する、あるいは故障の範囲が広範囲である 機器	・自動車および鉄道・船舶等の輸送機器の車両制御 (エンジン制御、駆動制御、プレーキ制御) ・新幹線・主要幹線の運行制御システム	267型Nシリーズ 271型Nシリーズ 279型Mシリーズ	111型Nシリーズ 111型Mシリーズ 112型Mシリーズ 204型Nシリーズ 247型	JAG型Nシリーズ JAJ型Nシリーズ JAK型Nシリーズ JHC型Nシリーズ KAB型Nシリーズ KVA型Nシリーズ	431型 431型Aシリーズ 503型 553型
	3	 製品の保守交換が可能な機器や、製品の故障が人命に 影響しないが故障によるシステムダウンの損失が大き く保全管理が要求される機器 	・エアコン、カーナビ等の車室内搭載部品、 車載用通信機器 ・家庭用/ビル用等のセキュリティ管理システム ・工業用ロボットや工作機械等の制御機器	267型Mシリーズ 267型Eシリーズ 281型Mシリーズ TCA型	204型Mシリーズ	KAB型Mシリーズ	801型 802型
汎用機器	4	・ 最先端技術を積極的に適用する小型・薄型品 ・ 製品の保守交換が可能な機器や、製品の故障による システムダウンが部分的な機器向けの市場で広く 使用されることを想定した製品	・スマートフォン、携帯電話、モバイルPC(タブレット)、電子辞書 ・デスクトップPC、ノートPC、ホームネットワーク ・アミューズメント機器(バチンコ、ゲーム機)	251型Mシリーズ 281型Eシリーズ TCB型		JAE型、JAG型 JAJ型、JAK型 JHG型 KAB型 KAB型Tシリーズ KVA型	503型Aシリーズ

Market	Application classification		Use	Recommendation Type	Recommendation Type	Recommendation Type	Recommendation Type
iviarket	by use	Outline	Typical example of application	Chip Tantalum Capacitors	Leaded Tantalum Capacitors	Circuit Protection Components	Film Capacitors
High reliability apparatus	1	Apparatus in which advanced safety and reliability are demanded. Whether failure of the apparatus which cannot maintenance exchange products, and a product is direct for a human life, apparatus which changes or may cause a fatal system failure.	- Space development apparatus relation (Satellite, Rocket, Artificial Satellite) - Aviation and a defensive system - Atomic power, fire power, and a water-power generation system	Type 267 P Sereis	Type 111 P series	With no relevance	With no relevance
In-vehicle -	2	- Apparatus in which reliability is important The apparatus in which maintenance exchange of a product is very difficult, and failure of a product influence a human life, or the range of failure is wide range.	- Vehicles control of transport machines, such as a car, and a railroad, a vessel (Engine control, drive control, brake control) - The operation control system of the Shinkansen and a main artery	Type 267 N Sereis Type 271 N Sereis Type 279 M Sereis	Type 111 N series Type 111 M series Type 112 M series Type 204 N series Type 204 N series	Type JAG N series Type JAJ N series Type JAK N series Type JHC N series Type KAB N series Type KVA N series	Type 431 Type 431 A series Type 503
Industrial apparatus	3	-Apparatus which can maintenance exchange products, and apparatus in which the loss of the system failure is large although failure of a product does not influence a human life, and maintenance engineering is demanded		Type 267 M Sereis Type 267 E Sereis Type 281 M Sereis Type TCA	Type 204 M series	Type KAB M series	Type 553 Type 801 Type 802
Apparatus in general	4	- The small size and the thin article which applies leading-edge technology positively - The product supposing being used widely in the market for the apparatus which can maintenance exchange products, and apparatus with a partial system failure by failure of product.	-Smart phone, Mobile phone, Mobile PC (tablet), Electronic dictionary - Desktop PC, Notebook PC, Home network - Amusement apparatus (Pachinko,Game machine)	Type 251M Series Type 281 E Series Type TCB		Type JAE, Type JAG Type JAJ, Type JAK Type JHC Type KAB Type KAB T series Type KVA	Type 503 A series

テーピング数量・リール寸法

Taping Quantity And Carrier Tape Dimensions

チップタンタルコンデンサ Chip Tantalum Capacitors

定格: 251型Mシリーズ, TCB型 Type: 251 M Series, TCB

ケース記号 Case Code	ケースサイズ Case size	W (mm)	F (mm)	E (mm)	P ₁ (mm)	P ₂ (mm)	P ₀ (mm)	ϕD_0 (mm)	包装数/リール(個) Quantity/Reel (pcs)
		` '	` '	()		()	()	(******)	<i>φ</i> 180
U	1.0×0.5				2.0±0.05			1.55±0.03	10,000
М	1.6×0.8	00103	3.5±0.05	1.75±0.1		201005	4.0±0.1		
S	2.0×1.25	2.0×1.25 8.0±0.3		1./ S±0.1	4.0±0.1	2.0±0.05	4.0±0.1	1.5 ^{+0.1} ₀	3,000
Α	3.2×1.6								

定格:267型Mシリーズ, 267型Eシリーズ, 267型Pシリーズ, 271Nシリーズ 279型Mシリーズ, 281型Mシリーズ, 281型Eシリーズ Type:267 M Series, 267 E Series, 267 P Series, 271 N Series

279 M Series, 281 M Series, 281 E Series

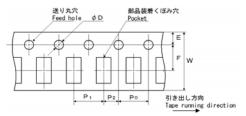
ケース記号 Case Code	ケースサイズ Case size	W (mm)	F (mm)	E (mm)	P ₁ (mm)	P ₂	P ₂ P ₀ D ₀ (mm) (mm)	ŭ	包装数/リール(個) Quantity/Reel (pcs)	
Case Code	Case size	(111111)	(111111)	(111111)	(11111)	(111111)	(111111)	(111111)	φ180	ϕ 330
Α	3.2×1.6	8.0±0.3	8.0±0.3 3.5±0.05	.05 1.75±0.1	4.0±0.1				2,000	9,000
В	3.5×2.8	0.010.3	3.3±0.03							8,000
C3	6.0×3.2		5.5±0.05			2.0±0.05	4.0±0.1	$\phi 1.5^{+0.1}_{0}$		3,000
D3	7.3×4.4	12.0±0.3	5.7±0.05	1.5±0.1	8.0±0.1	2.0±0.05	4.0±0.1	Ψ1.5 0	500	2,500
Н	7.3×4.4	12.0±0.3	5.7±0.1	1.5E0.1	0.U±U.1				500	1,500
E	7.3×5.8		5.5±0.05	1.75±0.05						2,000

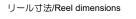
定格:267型Nシリーズ、TCA型 Type: 267 N Series, TCA

.)pc + 20. 11 esiles, 10.1												
ケース記号 Case Code	ケースサイズ Case size		P ₀ (mm)	D ₀ (mm)	包装数/し Quantity/F							
Case Code	Case size	(111111)	(111111)	(111111)	(111111)	(111111)	(111111)	(111111)	φ180	φ330		
Α	3.2×1.6	8.0±0.3	3.5±0.05		4.0±0.1				2,000	9,000		
В	3.5×2.8	0.U±U.3	0.010.3	0.0±0.0	3.3±0.03	1.75±0.1	4.010.1	2.0±0.05	4.0±0.1	$\phi 1.5^{+0.1}$	2,000	8,000
С	6.0×3.2	12.0±0.3	5.5±0.05		8.0±0.1	2.0±0.05	4.0±0.1	ψ 1.5 $_{0}$	500	3,000		
D	7.3×4.4		12.0±0.3	5.7±0.05	1.5±0.1	6.0±0.1				500	2,500	

回路保護素子

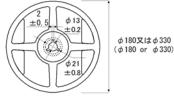
Circuit Protection Components


定格:JAE型、JAG型、JAG型Nシリーズ、JAJ型、JAJ型Nシリーズ、JAK型、JAK型Nシリーズ、JHC型、JHC型Nシリーズ KAB型、KAB型Nシリーズ、KAB型Mシリーズ、KAB型Tシリーズ、KVA型、KVA型Nシリーズ


Type: JAE, JAG, JAG N Series, JAJ, JAJ N Series, JAK, JAK N Series, JHC, JHC N Series

KAB, KAB N Series, KAB M Series, KAB T Series, KVA, KVA N Series

ケース記号 Case Code	ケースサイズ Case size	W (mm)	F (mm)	E (mm)	P ₁ (mm)	P ₂ (mm)	P ₀ (mm)	D ₀ (mm)	包装数/リ Quantity/F					
Case Code	Case size	(111111)	(111111)	(111111)	(111111)	(111111)	(111111)	(111111)	φ180	ϕ 330				
29	1.6×0.8			1.75±0.05				φ 1.55±0.03	5,000	-				
31	2.0×1.25	8.0±0.3	8.0±0.3	8.0±0.3	8.0 ± 0.3	8.0±0.3	3.5±0.05	1.75±0.05	4.0±0.1			φ 1.00±0.00	3,000	-
52	3.2×1.6							2.0±0.05	4.0±0.1	φ1.5±0.1	2,000	-		
44E	7.3×5.8	12±0.3	5.5±005	1.75±0.1	8.0±0.1			$\phi 1.5^{+0.1}$	500	1,500				
59F	11.0×7.3	24±0.3	11.5±005		12.0±0.1			ψ 1.3 $_{0}$	-	500				



単位[mm]

unit[mm]

φ180又はφ330

チップタンタルコンデンサ テーピング形状記号

Onlip Taritalarii Oapacitors Tape code								
φ180リール φ180Reel	φ330"J-11 φ330Reel	極性 Anode notation						
L		送り穴側 + Feed hole +						
-		送り穴側 -						

Feed hole