No.P-112-E003/1 DATE 2023-05

PRODUCTS DATA SHEET

TANTALUM SOLID ELECTROLYTIC CAPACITOR

Type 112

MATSUO ELECTRIC CO., LTD.

Type 112 (No.P-112-E003/1)

Type 112 is hermetically sealed capacitors in metal case, designed for high reliability.

FEATURES

- 1. Type 112 is smaller and larger capacitance compared with Type 111.
- 2. The type is hermetically sealed capacitors in metal case, designed for excellent stability.
- 3. Designed for high reliability.
- 4. Available for capacitance tolerance code "J"(±5%).

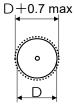
APPLICATION CLASSIFICATION BY USE

The application classification by use which divided the market and use into four is set up supposing our products being used for a broad use.

Please confirm the application classification by use of each product that you intend to use.

Moreover, please be sure to inform to our Sales Department in advance in examination of the use of those other than the indicated use.

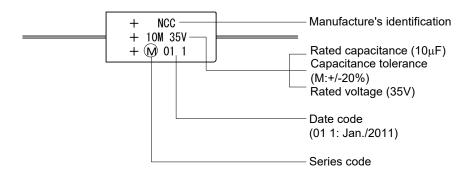
RATING


Item	Rating
Category temperature range (Operating temperature)	-55 ~ +125°C
Rated Temperature (Maximum operating temperature for DC rated Voltage)	+85°C ⁽¹⁾
DC rated voltage range [U _R]	
Rated capacitance (Normal capacitance range [C _R])	See CATALOG NUMBERS AND
Rated capacitance tolerance	RATING OF STANDARD PRODUCTS
Failure rate level	1%/1000 h

ORDERING INFORMATION

112 TYPE			M SERIES		1602 RATED VOLTAGE		475 PACITANCE		CAPAC	M CITANCE RANCE
Marking	Rated voltage	Marking	Capacitance	Marking	Capacitance	Marking	Capacitance		Marking	Capacitance Tolerance
6301	6.3VDC	155	1.5 μF	156	15 μF	157	150 μF		K	±10%
1002	10VDC	225	2.2 μF	226	22 μF	227	220 μF		М	±20%
1602	16VDC	335	3.3 μF	336	33 μF	337	330 μF			
2002	20VDC	475	4.7 μF	476	47 μF	477	470 μF			
2502	25VDC	685	6.8 μF	686	68 μF	687	680 μF			
3502	35VDC	106	10 μF	107	100 μF	108	1000 μF			
5002	50VDC		_			_	<u> </u>	•		

DIMENSIONS



Unit: mm

Case size	D ±0.5	L ±1	ϕ d
Α	3.15	6.3	0.5 +0.1/-0.025
Е	4.5	10.0	0.5 +0.1/-0.025
В	4.5	11.5	0.5 +0.1/-0.025
Н	6.3	12.5	0.65 +0.12/-0.03
С	7.1	16.0	0.65 +0.12/-0.03
D	8.7	19.5	0.65 +0.12/-0.03

MARKING

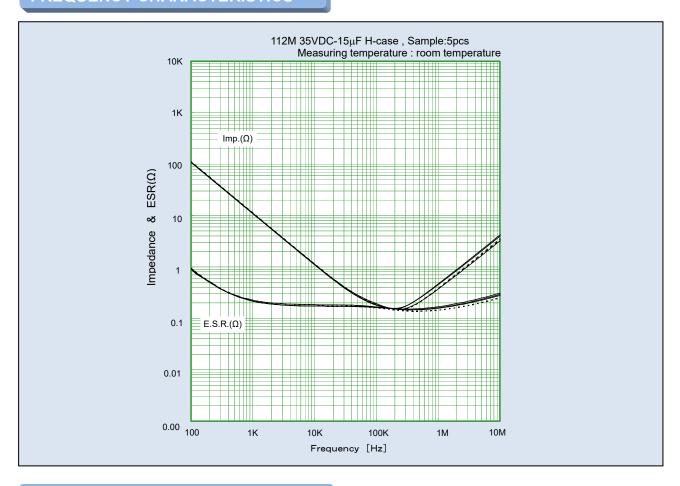
STANDARD RATING

R.V.(VDC) Cap.(μF)	6.3	10	16	20	25	35	50
1.5						Α	E
2.2					Α	E	E
3.3				Α		E	E
4.7			Α			E	
6.8		Α			E		В
10	Α			E		В	Н
15			E		В	Н	
22		E		В		Н	С
33	E		В		Н	С	D
47	E	В		Н		С	
68		В	Н		С	D	
100	В	Н		С	D	D	
150	Н		С	D	D		
220	Н	С	D	D			
330	С		D				
470	С	D					
680	D						
1000	D						

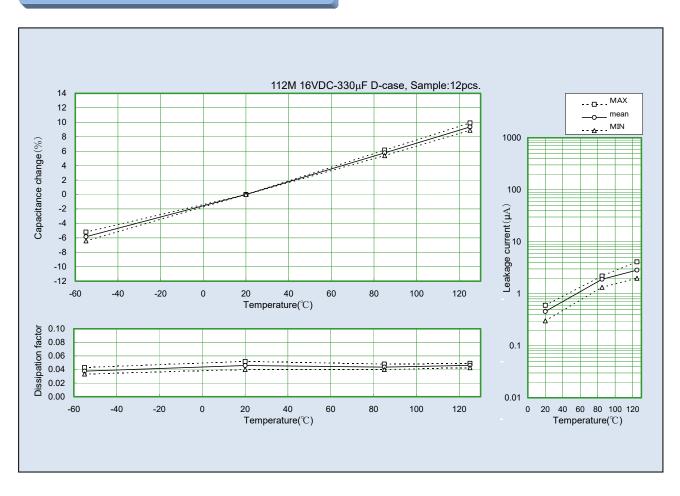
CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS

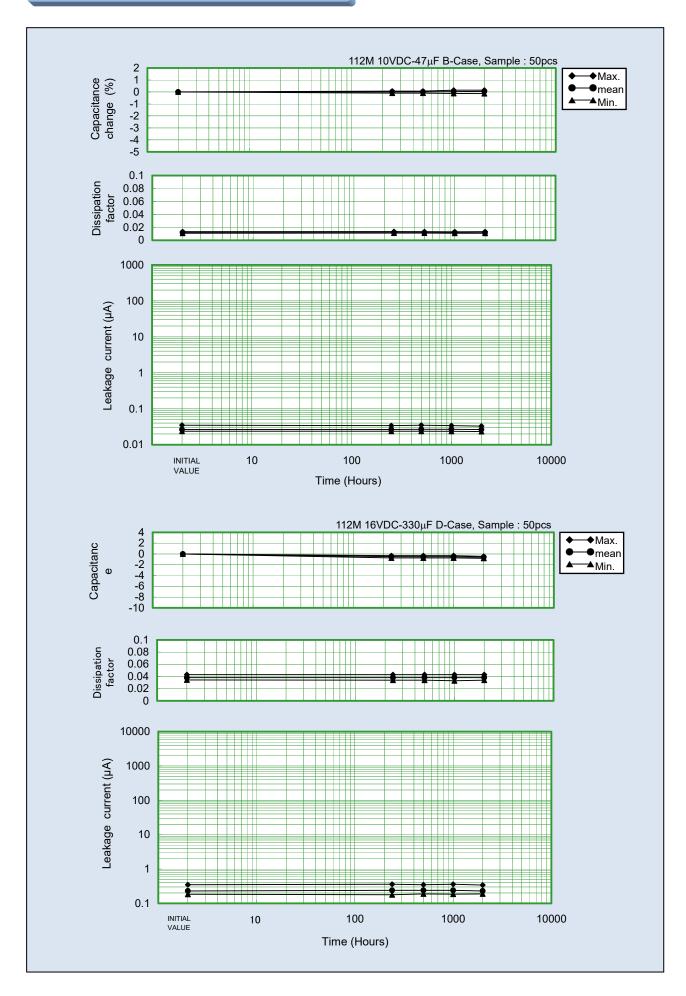
May, 2023

	1	1	1	1				1		y, 202	
Catalog Number (¹)	U _R VDC	Us VDC	C _R	Case code	Leakage	current(D	CL) µA	[Dissipati	on facto	r
	VDC	VDC	μF	code	20℃	85℃	125℃	-55℃	20℃	85℃	125℃
112 M 6301 106 ¹	6.3	8	10	Α	0.6	6	7.9	0.06	0.06	0.06	0.06
112 M 6301 336 ⁻¹	1	l l	33	E	2.1	21	26	0.06	0.06	0.06	0.06
112 M 6301 476 ⁻¹	Ĭ	Ĭ	47	E	3.0	30	37	0.06	0.06	0.06	0.06
112 M 6301 107 ⁻¹	Ĺ	Ĺ	100	В	6.3	63	79	0.08	0.08	0.08	0.08
112 M 6301 157 _1	Ĭ	Ĭ.	150	Н	9.5	95	118	0.08	0.08	0.08	0.08
112 M 6301 227 ⁻¹	Ĭ	Ĭ.	220	Н	14	140	173	0.08	0.08	0.08	0.08
112 M 6301 337 ⁻¹	Ĭ	Ĭ.	330	С	21	210	260	0.08	0.08	0.08	0.08
112 M 6301 477 ⁻¹	Ĭ	Ĭ.	470	С	30	300	370	0.10	0.10	0.10	0.12
112 M 6301 687 ⁻¹	Ĭ	ľ	680	Ď	43	430	536	0.10	0.10	0.10	0.12
112 M 6301 108 ⁻¹	Ĭ	Ĭ	1000	D	63	630	788	0.12	0.12	0.15	0.15
112 M 1002 685 ¹	10	13	6.8	Α	0.7	7	8.5	0.06	0.06	0.06	0.06
112 M 1002 226 ⁻¹	1	i	22	E	2.2	22	28	0.06	0.06	0.06	0.06
112 M 1002 476 ⁻¹	ľ	ľ	47	В	4.7	47	59	0.06	0.06	0.06	0.06
112 M 1002 686 ⁻¹	Ĭ	ľ	68	В	6.8	68	85	0.06	0.06	0.06	0.06
112 M 1002 107 ¹	ľ	ľ	100	H	10	100	125	0.08	0.08	0.08	0.08
112 M 1002 107 _1		ľ	220	C	22	220	275	0.08	0.08	0.08	0.08
112 M 1002 477 ⁻¹	ľ	ľ	470	D	47	470	588	0.10	0.10	0.10	0.12
112 M 1602 475 ¹	16	20	4.7	A	0.8	8	9.4	0.04	0.04	0.04	0.05
112 M 1602 156 ⁻¹	J		15	Ē	2.4	24	30	0.06	0.06	0.06	0.06
112 M 1602 336 ⁻¹	Ĺ	Ĭ.	33	В	5.3	53	66	0.06	0.06	0.06	0.06
112 M 1602 686 ⁻¹	Ĭ	ľ	68	Н	11	110	136	0.06	0.06	0.06	0.06
112 M 1602 157 ⁻¹	ľ	ľ	150	C	24	240	300	0.08	0.08	0.08	0.08
112 M 1602 227 ⁻¹	Ĭ	Ĭ.	220	D	35	350	440	0.08	0.08	0.08	0.08
112 M 1602 337 ⁻¹	Ĭ	Ĭ.	330	D	53	530	660	0.08	0.08	0.08	0.08
112 M 2002 335 ¹	20	25	3.3	Α	0.7	7	8.3	0.04	0.04	0.04	0.05
112 M 2002 106 ⁻¹	-	i i	10	E	2.0	20	25	0.06	0.06	0.06	0.06
112 M 2002 226 ⁻¹	Ĭ	ľ	22	В	4.4	44	55	0.06	0.06	0.06	0.06
112 M 2002 476 ⁻¹	ľ	ľ	47	H	9.4	94	118	0.06	0.06	0.06	0.06
112 M 2002 107 ⁻¹	Ĭ	ľ	100	C	20	200	250	0.08	0.08	0.08	0.08
112 M 2002 157 ⁻¹	Ĭ	ľ	150	Ď	30	300	375	0.08	0.08	0.08	0.08
112 M 2002 227 _1	Ĭ	Ĭ	220	D	44	440	550	0.08	0.08	0.08	0.08
112 M 2502 225 ¹	25	32	2.2	Α	0.6	6	6.9	0.04	0.04	0.04	0.05
112 M 2502 685 ⁻¹	1	1	6.8	Е	1.7	17	21	0.06	0.06	0.06	0.06
112 M 2502 156 ⁻¹	Ĭ	Ĭ	15	В	3.8	38	47	0.06	0.06	0.06	0.06
112 M 2502 336 ⁻¹	Ĭ	Ĭ	33	Н	8.3	83	103	0.06	0.06	0.06	0.06
112 M 2502 686 ⁻¹	Ĭ	Ĭ	68	С	17	170	213	0.06	0.06	0.06	0.06
112 M 2502 107 ⁻¹	Ĭ	Ĭ	100	D	25	250	313	0.08	0.08	0.08	0.08
112 M 2502 157 ⁻¹	j	j	150	D	37	370	468	0.08	0.08	0.08	0.08
112 M 3502 155 _1	35	44	1.5	Α	0.5	5	6.6	0.04	0.04	0.04	0.05
112 M 3502 225 ⁻¹	1	1	2.2	Е	0.8	8	9.6	0.04	0.04	0.04	0.05
112 M 3502 335 ¹	ĺ	Ĭ	3.3	Е	1.2	12	14	0.04	0.04	0.04	0.05
112 M 3502 475 ⁻¹	j	ļ į	4.7	E	1.6	16	21	0.04	0.04	0.04	0.05
112 M 3502 106 ¹	İ	İ	10	В	3.5	35	44	0.06	0.06	0.06	0.06
112 M 3502 156 ¹	j	j	15	Н	5.3	53	66	0.06	0.06	0.06	0.06
112 M 3502 226 ⁻¹	j	ļ į	22	Н	7.7	77	96	0.06	0.06	0.06	0.06
112 M 3502 336 ¹	, i	ļ .	33	С	12	120	144	0.06	0.06	0.06	0.06
112 M 3502 476 ¹	ļ ,	ļ į	47	С	16	160	206	0.06	0.06	0.06	0.06
112 M 3502 686 _1	↓	↓	68	D	24	240	298	0.06	0.06	0.06	0.06
112 M 3502 107 _1	<u> </u>	<u> </u>	100	D	35	350	437	0.08	0.08	0.08	0.08
112 M 5002 155 _1	50	63	1.5	Е	0.8	8	9.4	0.04	0.04	0.04	0.05
112 M 5002 225 ⁻¹	↓	↓	2.2	E	1.1	11	14	0.04	0.04	0.04	0.05
112 M 5002 335 ¹	↓	↓	3.3	E	1.7	17	21	0.04	0.04	0.04	0.05
112 M 5002 685 ¹	ļ ,	ļ į	6.8	В	3.4	34	43	0.06	0.06	0.06	0.06
112 M 5002 106 ⁻¹	↓	↓	10	Н	5.0	50	63	0.06	0.06	0.06	0.06
112 M 5002 226 ¹	↓	↓	22	С	11	110	138	0.06	0.06	0.06	0.06
112 M 5002 336 ⁻¹	<u> </u>	<u> </u>	33	D	17	170	206	0.06	0.06	0.06	0.06


* U_R = Rated Voltage U_S = Surge Voltage C_R = Capacitance Note1 : For Capacitance tolerance , insert "K" or "M" into $_^1$

PERFORMANCE


1	Leaka	Ite ne Curre			Test method
	Leakage Current (μA)		πι (μΑ)	Shall not exceed 0.01 CV or 0.5 whichever is greater.	JIS C 5101-1,4.9 Applied Voltage : Rated Voltage for 5 min.
2	Capacitance (μF)		F)	Shall be within tolerance of the nominal value specified.	Temperature: 20°C JIS C 5101-1,4.7 Frequency: 120 Hz ±20% Voltage: 0.5Vrms+1.5 ~2VDC Temperature: 20°C
3	Dissipation Factor		etor	Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS.	JIS C 5101-1,4.8 Frequency : 120 Hz ±20% Voltage : 0.5Vrms+1.5 ~2VDC Temperature : 20°C
		cteristics mperatu	at High and		JIS C 5101-1,4.29
		·	Leakage Current	Shall not exceed the value in No.1.	Measuring temperature : 20 ±2°C
		Step1	Capacitance Dissipation Factor	Shall be within the specified tolerance. Shall not exceed the value in No.3.	
		Step2	Capacitance Change Dissipation Factor	Shall be within ±10% of the value at Step 1. Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS.	Measuring temperature : -55 ±3°C
		Step3	Leakage Current Capacitance Change	Shall not exceed the value in No.1. Shall be within ±2% of the value at Step 1.	Measuring temperature : 20 ±2°C
	_		Dissipation Factor	Shall not exceed the value in No.3.	
4		Step4	Leakage Current Capacitance Change	Shall not exceed 0.1 CV or 5 whichever is greater. Shall be within ±8% of the value at Step 1.	Measuring temperature : 85 ±2°C
	-		Dissipation Factor Leakage	Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS. Shall not exceed 0.125 CV or 6.3 whichever is greater.	Measuring temperature : 125 ±2°C
		Step5	Current Capacitance Change Dissipation	Shall be within ±12% of the value at Step 1. Shall not exceed the values shown in CATALOG	
	-		Factor Leakage	NUMBERS AND RATING OF STANDARD PRODUCTS. Shall not exceed the value in No.1.	Measuring temperature : 20 ±2°C
		Step6	Current Capacitance Change	Shall be within ±2% of the value at Step 1.	
			Dissipation Factor	Shall not exceed the value in No.3.	W0.0.5404.4.400
5	Surge		Leakage Current Capacitance Change	Shall not exceed the value in No.1. Shall be within ±5% of initial value.	JIS C 5101-1,4.26 Test temperature : 85 ±2°C, Applied Voltage :DC surge voltage Series protective resistance :
3			Dissipation Factor	Shall not exceed the value in No.3.	1000 Ω Discharge resistance : 1000 Ω
	Sleevi	na	Appearance Dielectric	There shall be no evidence of mechanical damage. There shall be no dielectric breakdown.	JIS C 5101-1,4.6(c)
6	2,0071	. ਰ	withstanding voltage		Voltage: 2000VDC Duration : 1 min.
			Insulation resistanc	More than 1000M Ω	JIS C 5101-1,4.5(c) Voltage: 100VDC Duration : 2 min.
	Termir streng		Tensile strength	No fault such as breakage and loosening terminal	JIS C 5101-1,4.13.1 Applied force: 5N (d= φ 0.5) ,10N (d= φ 0.65)
7	Bending strength				Duration:10 ±1 s JIS C 5101-1,4.13.2 Bending force : 2.5N (d= ϕ 0.5), 5N (d= ϕ 0.65) Bending cycle:2


No.	Ita		Dorformana	Toot mathed
INO.	Vibration	em L Canacitanas	Performance	Test method JIS C 5101-1,4.17
	VIDIATION	Capacitance	Initial value to remain steady during measurement.	Frequency range : 10 ~ 2000 Hz Swing width : 1.5 mm Peak acceleration : 196m/s²
8		Appearance	There shall be no evidence of mechanical damage.	Vibration direction : 2 directions with mutually right-angled Duration : 4 hours in each of these mutually perpendicular directions (total 8 hours)
9	Shock		There shall be no intermittent contact of 0.5 ms or greater, short, or open. Nor shall there be any spark discharge, insulation breakdown, or evidence of mechanical damage.	JIS C 5101-1,4.19 Peak acceleration :981 m/s² (100G) Duration : 6 ms Wave form : Sawtooth
10	Solderability		Shall be covered to over 3/4 of terminal surface by new soldering.	JIS C 5101-1,4.15 Solder temperature: 230 ±5°C Dipping time: 2 ±0.5 s Dipping depth: 2.0 to 2.5 mm from the terminal base
11	Resistance to Soldering Heat	Leakage Current Capacitance Change	Shall not exceed the value in No.1. Shall be within ±3% of initial value.	JIS C 5101-1,4.14 Solder temperature: 260 ± °C Dipping time: 10 ±1 s Dipping depth :
		Dissipation Factor	Shall not exceed the value in No.3.	2.0 to 2.5 mm from the terminal base
	C	Appearance	There shall be no evidence of mechanical damage.	110 0 5404 4 4 24
12	Component solvent resistance	Appearance	There shall be no evidence of mechanical damage.	JIS C 5101-1, 4.31 Temperature: 23 ±5°C Dipping time: 5 ±0.5 min. Solvent: 2-propanol (Isopropyl alcohol)
13	Solvent resistance of marking	Visual examination	After the test the marking shall be legible.	JIS C 5101-1, 4.32 Temperature : 23 ±5°C Dipping time : 5 ±0.5 min. Solvent : 2-propanol (Isopropyl alcohol)
	Seal	l	There shall be no evidence of leakage.	JIS C 5101-1,4.20
14			Ç	Test condition : Qc, method 1 Temperature : 125 +5/+1°C Duration : 1min.
	Rapid Change of Temperature and immersion cycle	Rapid Change of Temperature	Measurements after cycling, are not applicable.	JIS C 5101-1,4.16 Step 1 : -55 +0/-3°C, 30 ±3 min. Step 2 : 25 +10/-5°C, 3 min. max. Step 3 : 125 +3/-0°C, 30 ±3 min. Step 4 : 25 +10/-5°C, 3 min. max. Number of cycles : 5
15		Immersion cycle Leakage	Shall not exceed the value in No.1.	MIL-STD-202 method 104A Temperature of hot bath of fresh water: 65 +5/-0°C
		Current Capacitance Change	Shall be within ±5% of initial value.	Temperature of saturated solution of sodium chloride and water: 0 ±3°C
		Dissipation Factor	Shall not exceed the value in No.3.	Duration of immersion: 15 ±2 min. Number of cycle: 2
		Appearance	There shall be no evidence of mechanical damage.	,
16	Moisture resistance	Leakage Current Capacitance Change	Shall not exceed the value in No.1. Shall be within ±5% of initial value.	JIS C 60068-2-38 High temperature : 65 +5/-0°C 90 to 98%R.H. Low temperature :
10		Dissipation Factor Appearance	Shall not exceed the value in No.3. There shall be no evidence of mechanical damage.	25 +0/-2°C 90 to 98%R.H.
17	Salt spray		There shall be no harmful corrosion, and at least 90% of any exposed surfaca of the capacitor shall be protected by the finish. There shall be no unwraping of, or mechanical damage	JIS C 60068-2-11 Temperature : 35 ±2°C Salt solution : 5 ±1% (wt) Duration : 48 ±4 h
			to, the sleeving. Marking shall remain legible.	
	Endurance	Leakage Current Capacitance	Shall not exceed the value in No.1. Shall be within ±5% of initial value.	JIS C 5101-1,4.23 Test temperature and applied voltage: 85 ±2°C and rated voltage or
18		Change Dissipation Factor	Shall not exceed the value in No.3.	125 ±3°C and 2/3 × rated voltage Duration : 2000 +72/-0h Power supply impedance :

FREQUENCY CHARACTERISTICS

TEMPERATURE CHARACTERISTICS

Application Notes for Tantalum Solid Electrolytic Capacitor (Hermetically sealed capacitors in metal case)

1. Operating Voltage

Tantalum Solid Electrolytic Capacitor shall be operated at the rated voltage or lower.

Rated voltage: The "rated voltage" refers to the maximum DC voltage that is allowed to be continuously applied between the capacitor terminals at the rated temperature.

Surge voltage: The "surge voltage" refers to the voltage that is allowed to be instantaneously applied to the capacitor at the rated $\,$ temperature or the maximum working temperature. The capacitor shall withstand the voltage when a 30-second cycle of application of the voltage through a 1000 Ω series resistance is repeated 1000 times in 6-minute periods.

Rated voltage (VDC)	6.3	10	16	20	25	35	50	75	100
Surge voltage (VDC)	8	13	20	25	32	44	63	98	125

When designing the circuit, the equipment's required reliability must be considered and appropriate voltage derating must be performed. Figure 1 shows the recommended voltage derating curve for Tantalum capacitors as described by NASA APPLICATION NOTES.

2. Application that contain AC Voltage

Special attention to the following 3 items.

- (1) The sum of the DC bias voltage and the positive peak value of the AC voltage should not exceed the rated voltage.
- (2) Reverse voltage should not exceed the allowable values of the negative peak AC voltage.
- (3) Ripple current should not exceed the allowable values.

3. Reverse Voltage

Tantalum solid electrolytic capacitor is polarity. Please do not impress reverse voltage. As well, please confirm the potential of the tester beforehand when both ends of the capacitor are checked with the tester etc.

4. Permissible Ripple Voltage

Permissible ripple voltage is determined by the heat loss of the element and heat radiation of the lead wire. This is influenced by capacitance, ESR, operating temperature, and frequency or ripple. Please consult Matsuo's Engineering Bulletin for details on calculating ripple current values.

5. Application on low-impedance circuit

The failure rate of low impedance circuit at $0.1\Omega/V$ is about five times greater than that of a $1\Omega/V$ circuit. To curtail this higher failure rate, tantalum capacitors used in low impedance circuits, such as filters for power supplies, particularly switching power supplies, or for noise by-passing, require that operating voltage be derated to less than half of the rated voltage. Actually, less than 1/3 of the rated voltage is

6. Non Polar Application(BACK TO BACK)

The capacitor cannot be used as a non-polar unit.

7. Soldering

The soldering of Type 111 and Type 112 should be operated per the following recommended conditions.

(1) Flow Soldering (Direct heating from the substrate)

Solder temperature: 260°C or less

Dipping time: 10 s

Note1: Noted that solder part of hermetic could be melted If soldering temperature is too high or dipping time is too long for the operation.

(2) Soldering with a Soldering Iron

Note2: Please be noted that soldering should be done more than 4mm apart from product body.

8.Example of trouble phenomenon happening by excessive heating when soldering

When mounting, the following breakdown phenomena might be caused when excessive heating that exceeds the above-mentioned tolerance is done. Therefore, please pay attention to the operation.

In a case that solder is used for cathode connection of molding type product, Ag in silver paste could merge into solder if solder in product have melted. That might cause excessive Leakage Current and Short etc. by changing in deterioration in DF and the high frequency impedance or internal stresses in that case.

Mechanical stress according to heat stress and expansion shrinkage or concentrations of internal stress might increase failure rate. Defect sealing could sometimes come for solder melting in seal entrance part of Type 111 and Type 112. Or, solder flows, might become a bridge between inside and outside circles of the Hermetic seal, be good at the solder grain if inhaled, and the phenomenon such as a short or intermittent shorts be caused.

9.Flux

Please use flux as much as possible with non-acidity and little content of both chlorine and amine.

10. Cleaning

Cleaning by organic solvent may damage capacitor's appearance and performance. However, our capacitors are not effected even when soaked at $20 \sim 30^{\circ}$ C 2-propanol for 5 minutes. When introducing new cleaning methods or changing the cleaning term, please consult us.

11. Protective Resin Coating

After components are assembled to substrate, a protective resin coating is sometimes applied. As this resin coating cures, it gives mechanical and thermal stress to Tantalum capacitors. This stress can cause damage to the capacitors, which affects their reliability. Before using a resin coating, proper research must be done in regards to the material and process to insure that excessive stress will not be applied to capacitors and other components.

12. Vibration

Approximately 300 G shall be applied to a capacitor, when dropped from 1 meter to a concrete floor.

Although capacitors are made to withstand this drop test, stress from shock due to falling or striking does cause damage to the capacitors and increases failure rates. Do not subject capacitors to this type of mechanical stress.

Additional Notes

- · When more than one capacitor is connected in series, a resistor that can distribute the voltage equally to the capacitors shall be connected in parallel.
- · The capacitor cases shall not be cut even if the mounting space is insufficient.
- · Do not process lead wire terminal in a way other than cutting or bending the part that projects from printed circuit board (plated through hole).
- · Do not add the outside power more than regulations to lead wire terminal. Do not add excessive power to capacitor.
- During a customers aging process, voltage should remain under the rated voltage at all times.
- · Capacitors should never be touched or manipulated while operating.
- · Capacitors are not meant to be dismantled.
- · When testing capacitors, please examine the power source before conducting test to insure the tester's polarity and applied voltage.
- · Do not touch terminals of other parts if electrode is applied and checked while energizing. Do not bend the lead wire terminal with the electrode testers.
- · In the event of a capacitor burning, smoking, or emitting an offensive smell during operation, please turn the circuit "off" and keep hands and face away from the burning capacitor.
- If a capacitor be electrical shorted, it becomes hot, and the capacitor element may ignite. In this case, the printed board may be burnt out.
- · A for capacitors (Type 111 and Type 112) with the metal casing, pressure in the cases might go up by Short before they explode, and then high-temperature solder might disperse.
- · Capacitors should be stored at room temperature under low humidity. Capacitors should never be stored under direct sunlight, and should be stored in an environment containing dust.
- · If the capacitors will be operated in a humid environment, they should be sealed with a compound under proper conditions.
- Capacitors should not be stored or operated in environments containing acids, alkalis or active gasses.
- · When capacitors are disposed of as "scrap" or waste, they should be treated as Industria Waste since they contain various metals and polymers.
- · Capacitors submitted as samples should not be used for production purposes.

These application notes are prepared based on "Guideline of notabilia for fixed tantalum electrolytic capacitors with solid electrolyte for use in electronic equipment" (RCR-2368) issued by Japan Electronics and Information Technology Industries Association (JEITA). For the details of the instructions (explanation, reasons and concrete examples), please refer to this guideline, or consult our Sales Department.

MATSUO ELECTRIC CO., LTD.

Please feel free to ask our Sales Department for more information on Tantalum Solid Electrolytic Capacitor.

Overseas Sales 5-3,3-Chome,Sennari-cho,Toyonaka-shi,Osaka 561-8558,Japan Tel:06-6332-0883 Fax:06-6332-0920 Head office 5-3,3-Chome,Sennari-cho,Toyonaka-shi,Osaka 561-8558,Japan Tel:06-6332-0871 Fax:06-6331-1386

URL https://www.ncc-matsuo.co.jp/

Specifications on this catalog are subject to change without prior notice. Please inquire of our Sales Department to confirm specifications prior to use.

市場	適用 用途		用途	推奨品種	推奨品種	推奨品種	推奨品種
1020	分類	概要	代表的なアプリケーション例	チップタンタルコンデンサ	リード付タンタルコンデンサ	回路保護素子	フィルムコンデンサ
高信頼度 機器	1	高度な安全性や信頼性が要求される機器 製品の保守交換が不可能な機器、製品の故障が人命に 直接かかわる。または、致命的なシステムダウンを引 き起こす可能性がある機器	・宇宙開発機器関連(衛星、ロケット、人工衛星)・航空・防衛システム・原子カ・火力・水力発電システム	267型Pシリーズ	111型Pシリーズ	該当なし	該当なし
車載 • 産業機器	2	信頼性が重視される機器 ・製品の保守交換が極めて困難な機器や、製品の故障が 人命に影響する、あるいは故障の範囲が広範囲である 機器	・自動車および鉄道・船舶等の輸送機器の車両制御 (エンジン制御、駆動制御、プレーキ制御) ・新幹線・主要幹線の運行制御システム	267型Nシリーズ 271型Nシリーズ 279型Mシリーズ	111型Nシリーズ 111型Mシリーズ 112型Mシリーズ 204型Nシリーズ 247型	JAG型Nシリーズ JAJ型Nシリーズ JAK型Nシリーズ JHC型Nシリーズ KAB型Nシリーズ KVA型Nシリーズ	431型 431型Aシリーズ 503型 553型
	3	 製品の保守交換が可能な機器や、製品の故障が人命に 影響しないが故障によるシステムダウンの損失が大き く保全管理が要求される機器 	・エアコン、カーナビ等の車室内搭載部品、 車載用通信機器 ・家庭用・ビル用等のセキュリティ管理システム ・工業用ロボットや工作機械等の制御機器	267型Mシリーズ 267型Eシリーズ 281型Mシリーズ TCA型	204型Mシリーズ	KAB型Mシリーズ	801型 802型
汎用機器	4	・ 最先端技術を積極的に適用する小型・薄型品 ・ 製品の保守交換が可能な機器や、製品の故障による システムダウンが部分的な機器向けの市場で広く 使用されることを想定した製品	・スマートフォン、携帯電話、モバイルPC(タブレット)、電子辞書 ・デスクトップPC、ノートPC、ホームネットワーク ・アミューズメント機器(バチンコ、ゲーム機)	251型Mシリーズ 281型Eシリーズ TCB型		JAE型、JAG型 JAJ型、JAK型 JHG型 KAB型 KAB型Tシリーズ KVA型	503型Aシリーズ

Market	Application classification		Use	Recommendation Type	Recommendation Type	Recommendation Type	Recommendation Type
iviarket	by use	Outline	Typical example of application	Chip Tantalum Capacitors	Leaded Tantalum Capacitors	Circuit Protection Components	Film Capacitors
High reliability apparatus	1	Apparatus in which advanced safety and reliability are demanded. Whether failure of the apparatus which cannot maintenance exchange products, and a product is direct for a human life, apparatus which changes or may cause a fatal system failure.	- Space development apparatus relation (Satellite, Rocket, Artificial Satellite) - Aviation and a defensive system - Atomic power, fire power, and a water-power generation system	Type 267 P Sereis	Type 111 P series	With no relevance	With no relevance
In-vehicle -	2	- Apparatus in which reliability is important The apparatus in which maintenance exchange of a product is very difficult, and failure of a product influence a human life, or the range of failure is wide range.	- Vehicles control of transport machines, such as a car, and a railroad, a vessel (Engine control, drive control, brake control) - The operation control system of the Shinkansen and a main artery	Type 267 N Sereis Type 271 N Sereis Type 279 M Sereis	Type 111 N series Type 111 M series Type 112 M series Type 204 N series Type 204 N series	Type JAG N series Type JAJ N series Type JAK N series Type JHC N series Type KAB N series Type KVA N series	Type 431 Type 431 A series Type 503
Industrial apparatus	3	-Apparatus which can maintenance exchange products, and apparatus in which the loss of the system failure is large although failure of a product does not influence a human life, and maintenance engineering is demanded		Type 267 M Sereis Type 267 E Sereis Type 281 M Sereis Type TCA	Type 204 M series	Type KAB M series	Type 553 Type 801 Type 802
Apparatus in general	4	- The small size and the thin article which applies leading-edge technology positively - The product supposing being used widely in the market for the apparatus which can maintenance exchange products, and apparatus with a partial system failure by failure of product.	-Smart phone, Mobile phone, Mobile PC (tablet), Electronic dictionary - Desktop PC, Notebook PC, Home network - Amusement apparatus (Pachinko,Game machine)	Type 251M Series Type 281 E Series Type TCB		Type JAE, Type JAG Type JAJ, Type JAK Type JHC Type KAB Type KAB T series Type KVA	Type 503 A series